\(x^{16} + 4 x^{8} + 16 x^{6} + 16 x + 2\)
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $64$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_1$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[3, 4, \frac{53}{12}, \frac{53}{12}]$ |
| Visible Swan slopes: | $[2,3,\frac{41}{12},\frac{41}{12}]$ |
| Means: | $\langle1, 2, \frac{65}{24}, \frac{49}{16}\rangle$ |
| Rams: | $(2, 4, \frac{17}{3}, \frac{17}{3})$ |
| Jump set: | $[1, 3, 7, 15, 31]$ |
| Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Galois degree: |
$1536$
|
| Galois group: |
$C_2^6:(C_4\times S_3)$ (as 16T1300)
|
| Inertia group: |
$C_2^6:C_{12}$ (as 16T1041)
|
| Wild inertia group: |
$C_2^6:C_4$
|
| Galois unramified degree: |
$2$
|
| Galois tame degree: |
$3$
|
| Galois Artin slopes: |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]$
|
| Galois Swan slopes: |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]$
|
| Galois mean slope: |
$4.252604166666667$
|
| Galois splitting model: |
$x^{16} - 32 x^{14} - 32 x^{13} + 432 x^{12} + 704 x^{11} - 336 x^{10} + 768 x^{9} + 4148 x^{8} + 1008 x^{7} - 3888 x^{6} + 1632 x^{5} + 5616 x^{4} + 3088 x^{3} + 11936 x^{2} + 21872 x + 13762$
|