Properties

Label 2.1.16.64f1.130
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(64\)
Galois group $C_2^6:(C_4\times S_3)$ (as 16T1300)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{8} + 16 x^{6} + 16 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $64$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4, \frac{53}{12}, \frac{53}{12}]$
Visible Swan slopes:$[2,3,\frac{41}{12},\frac{41}{12}]$
Means:$\langle1, 2, \frac{65}{24}, \frac{49}{16}\rangle$
Rams:$(2, 4, \frac{17}{3}, \frac{17}{3})$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.1.4.11a1.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{8} + 16 x^{6} + 16 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[49, 48, 32, 16, 0]$

Invariants of the Galois closure

Galois degree: $1536$
Galois group: $C_2^6:(C_4\times S_3)$ (as 16T1300)
Inertia group: $C_2^6:C_{12}$ (as 16T1041)
Wild inertia group: $C_2^6:C_4$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]$
Galois Swan slopes: $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]$
Galois mean slope: $4.252604166666667$
Galois splitting model: $x^{16} - 32 x^{14} - 32 x^{13} + 432 x^{12} + 704 x^{11} - 336 x^{10} + 768 x^{9} + 4148 x^{8} + 1008 x^{7} - 3888 x^{6} + 1632 x^{5} + 5616 x^{4} + 3088 x^{3} + 11936 x^{2} + 21872 x + 13762$ Copy content Toggle raw display