Show commands: Magma
Group invariants
Abstract group: | $(C_2^2\times C_4^2).\OD_{16}$ |
| |
Order: | $1024=2^{10}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $7$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $1243$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,16,10,7,3,14,12,6)(2,15,9,8,4,13,11,5)$, $(1,4,2,3)(5,7)(6,8)(13,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ $16$: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ $32$: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ $64$: 16T84, 16T140 x 2 $128$: 32T1650 $256$: 16T495 $512$: 32T26977 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $(C_8:C_2):C_2$
Low degree siblings
16T1138 x 4, 16T1243 x 3, 32T35730 x 4, 32T35731 x 4, 32T35732 x 2, 32T35733 x 4, 32T35734 x 2, 32T36573 x 4, 32T36574 x 4, 32T36575 x 2, 32T36576 x 2, 32T47040 x 2, 32T47044 x 2, 32T50822 x 2, 32T50824 x 2, 32T71017 x 2, 32T88062 x 2, 32T89296 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
2C | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
2D | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
2E | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(5,6)(7,8)$ |
2F | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)$ |
2G | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)$ |
2H | $2^{4},1^{8}$ | $16$ | $2$ | $4$ | $( 3, 4)( 7, 8)(11,12)(13,14)$ |
2I | $2^{6},1^{4}$ | $32$ | $2$ | $6$ | $( 1, 2)( 5, 7)( 6, 8)( 9,10)(13,16)(14,15)$ |
4A | $4^{2},1^{8}$ | $8$ | $4$ | $6$ | $( 1, 3, 2, 4)( 9,12,10,11)$ |
4B | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 3, 2, 4)( 5, 6)( 7, 8)( 9,12,10,11)$ |
4C | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 4, 2, 3)( 5, 6)( 7, 8)( 9,12,10,11)$ |
4D | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 3, 2, 4)( 5, 6)( 7, 8)( 9,12,10,11)(13,14)(15,16)$ |
4E | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
4F1 | $4,2^{3},1^{6}$ | $16$ | $4$ | $6$ | $( 1, 2)( 5, 7, 6, 8)( 9,12)(10,11)$ |
4F-1 | $4,2^{3},1^{6}$ | $16$ | $4$ | $6$ | $( 3, 4)( 5, 7, 6, 8)( 9,12)(10,11)$ |
4G1 | $4,2^{3},1^{6}$ | $16$ | $4$ | $6$ | $( 1, 3)( 2, 4)( 5, 7, 6, 8)( 9,10)$ |
4G-1 | $4,2^{3},1^{6}$ | $16$ | $4$ | $6$ | $( 1, 4)( 2, 3)( 5, 7, 6, 8)( 9,10)$ |
4H1 | $4,2^{5},1^{2}$ | $16$ | $4$ | $8$ | $( 1, 3, 2, 4)( 5, 6)( 9,10)(11,12)(13,16)(14,15)$ |
4H-1 | $4,2^{5},1^{2}$ | $16$ | $4$ | $8$ | $( 1, 4, 2, 3)( 5, 6)( 9,10)(11,12)(13,16)(14,15)$ |
4I1 | $4,2^{5},1^{2}$ | $16$ | $4$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 9,12,10,11)(13,16)(14,15)$ |
4I-1 | $4,2^{5},1^{2}$ | $16$ | $4$ | $8$ | $( 1, 2)( 3, 4)( 7, 8)( 9,12,10,11)(13,16)(14,15)$ |
4J1 | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,10, 3,11)( 2, 9, 4,12)( 5,15, 8,14)( 6,16, 7,13)$ |
4J-1 | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,11, 3,10)( 2,12, 4, 9)( 5,14, 8,15)( 6,13, 7,16)$ |
4K1 | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,11, 4,10)( 2,12, 3, 9)( 5,15, 8,14)( 6,16, 7,13)$ |
4K-1 | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,10, 4,11)( 2, 9, 3,12)( 5,14, 8,15)( 6,13, 7,16)$ |
4L1 | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1, 9)( 2,10)( 3,12, 4,11)( 5,16)( 6,15)( 7,13, 8,14)$ |
4L-1 | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1, 9)( 2,10)( 3,11, 4,12)( 5,16)( 6,15)( 7,14, 8,13)$ |
8A1 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 5,10,15, 3, 8,11,14)( 2, 6, 9,16, 4, 7,12,13)$ |
8A-1 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1,14,11, 8, 3,15,10, 5)( 2,13,12, 7, 4,16, 9, 6)$ |
8A3 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1,15,11, 5, 3,14,10, 8)( 2,16,12, 6, 4,13, 9, 7)$ |
8A-3 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 8,10,14, 3, 5,11,15)( 2, 7, 9,13, 4, 6,12,16)$ |
8B1 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1,14,11, 5, 4,15,10, 8)( 2,13,12, 6, 3,16, 9, 7)$ |
8B-1 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 8,10,15, 4, 5,11,14)( 2, 7, 9,16, 3, 6,12,13)$ |
8B3 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 5,10,14, 4, 8,11,15)( 2, 6, 9,13, 3, 7,12,16)$ |
8B-3 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1,15,11, 8, 4,14,10, 5)( 2,16,12, 7, 3,13, 9, 6)$ |
Malle's constant $a(G)$: $1/2$
Character table
37 x 37 character table
Regular extensions
Data not computed