Learn more

Refine search


Results (1-50 of 384 matches)

Next   displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.4.4.36a5.353 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2} + 4\right) x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.354 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2} + 4\right) x^{3} + \left(2 t^{3} + 2\right) x^{2} + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.357 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 x ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + 4 x^{3} + \left(2 t^{3} + 2\right) x^{2} + \left(8 t + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.358 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 x ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + 4 x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + \left(8 t + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.361 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2} + 4\right) x^{3} + \left(2 t^{3} + 2\right) x^{2} + 8 x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.362 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2} + 4\right) x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 8 x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.365 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + 4 x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 8 t x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.366 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + 4 x^{3} + \left(2 t^{3} + 2\right) x^{2} + 8 t x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.369 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + 4 x^{3} + \left(2 t^{3} + 2\right) x^{2} + 8 t^{3} x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.370 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + 4 x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 8 t^{3} x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.373 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 x ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2} + 4\right) x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + \left(8 t^{3} + 8 t + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.374 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 x ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2} + 4\right) x^{3} + \left(2 t^{3} + 2\right) x^{2} + \left(8 t^{3} + 8 t + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.377 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + 4 x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + \left(8 t^{3} + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.378 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + 4 x^{3} + \left(2 t^{3} + 2\right) x^{2} + \left(8 t^{3} + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.381 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2} + 4\right) x^{3} + \left(2 t^{3} + 2\right) x^{2} + \left(8 t^{3} + 8 t\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.382 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 2\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2} + 4\right) x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + \left(8 t^{3} + 8 t\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.483 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 x^{3} ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(2 t^{3} + 2\right) x^{2} + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.484 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 x^{3} ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.487 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x^{3} + 8 x\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 8 t^{2} x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.488 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x^{3} + 8 x\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(2 t^{3} + 2\right) x^{2} + 8 t^{2} x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.491 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x^{3} + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 8 x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.492 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x^{3} + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(2 t^{3} + 2\right) x^{2} + 8 x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.495 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x^{3} + 8 x + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(2 t^{3} + 2\right) x^{2} + \left(8 t^{2} + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.496 $( x^{4} + x + 1 )^{4} + \left(6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x^{3} + 8 x + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + \left(8 t^{2} + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.497 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2}\right) x^{3} + \left(2 t^{3} + 2\right) x^{2} + 8 t^{2} x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.498 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2}\right) x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 8 t^{2} x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.501 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 x ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2}\right) x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.502 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 x ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2}\right) x^{3} + \left(2 t^{3} + 2\right) x^{2} + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.505 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2}\right) x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + \left(8 t^{2} + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.506 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + 8 ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2}\right) x^{3} + \left(2 t^{3} + 2\right) x^{2} + \left(8 t^{2} + 8\right) x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.509 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 2 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2}\right) x^{3} + \left(2 t^{3} + 2\right) x^{2} + 8 x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.36a5.510 $( x^{4} + x + 1 )^{4} + \left(4 x^{3} + 6 x^{2} + 4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{3} + 10 x + 2\right) ( x^{4} + x + 1 )^{2} + \left(8 x + 8\right) ( x^{4} + x + 1 ) + 4 x^{2} + 2$ $2$ $4$ $4$ $36$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $4$ $1$ $[2, \frac{7}{2}]$ $[1,\frac{5}{2}]$ $[2, 2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{4}$ $[1,1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{4}$ $[2,2,3,3,\frac{7}{2},\frac{7}{2}]$ $[1,1,2,2,\frac{5}{2},\frac{5}{2}]$ $t^{4} + t + 1$ $x^{4} + \left(4 t^{3} + 4 t^{2}\right) x^{3} + \left(2 t^{3} + 8 t^{2} + 2\right) x^{2} + 8 x + 4 t + 2$ $[6, 2, 0]$ $[1, 1]$ $z^2 + (t^3 + t + 1),(t^3 + t + 1) z + (t^3 + t + 1)$ $[1, 3, 7]$
2.4.4.44a1.423 $( x^{4} + x + 1 )^{4} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + 8 x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.424 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{3} + 8 t + 8\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.425 $( x^{4} + x + 1 )^{4} + 8 x^{2} ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t + 8\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.426 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2}\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{3} + 8\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.427 $( x^{4} + x + 1 )^{4} + 8 x ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + 8 t^{2} x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.428 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{3} + 8 t^{2} + 8 t\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.429 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{2} + 8 t\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.430 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2} + 8 x\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{3} + 8 t^{2}\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.431 $( x^{4} + x + 1 )^{4} + 8 ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.432 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{3} + 8 t\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.433 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + 8 t x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.434 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2} + 8\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + 8 t^{3} x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.435 $( x^{4} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{2} + 8\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.436 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x + 8\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{3} + 8 t^{2} + 8 t + 8\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.437 $( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x + 8\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{2} + 8 t + 8\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.438 $( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 8 x^{2} + 8 x + 8\right) ( x^{4} + x + 1 )^{3} + 4 x^{2} ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + \left(8 t^{3} + 8 t^{2} + 8\right) x^{3} + 4 t x^{2} + 8 t x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.1531 $( x^{4} + x + 1 )^{4} + \left(4 x^{2} + 4\right) ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + 8 t^{2} x^{3} + 4 t x^{2} + \left(8 t + 8\right) x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
2.4.4.44a1.1532 $( x^{4} + x + 1 )^{4} + 8 x^{3} ( x^{4} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{4} + x + 1 )^{2} + 8 x^{3} + 2$ $2$ $4$ $4$ $44$ $(C_2^2\times C_4^2).\OD_{16}$ (as 16T1243) $8$ $1$ $[3, 4]$ $[2,3]$ $[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{8}$ $[1,1,2,2,2,\frac{5}{2},3]^{8}$ $[2,2,3,3,\frac{7}{2}]_{2}$ $[1,1,2,2,\frac{5}{2}]_{2}$ $t^{4} + t + 1$ $x^{4} + 8 t^{3} x^{3} + 4 t x^{2} + \left(8 t + 8\right) x + 8 t^{3} + 2$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
Next   displayed columns for results