Show commands: Magma
Group invariants
Abstract group: | $A_6$ |
| |
Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $15$ |
| |
Transitive number $t$: | $20$ |
| |
CHM label: | $A_{6}(15)$ | ||
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,9,10,3,14)(2,15,7,12,6)(4,5,11,13,8)$, $(1,5)(2,7)(3,6)(4,15)(8,9)(12,13)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: None
Low degree siblings
6T15 x 2, 10T26, 15T20, 20T89, 30T88 x 2, 36T555, 40T304, 45T49Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{15}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{3}$ | $45$ | $2$ | $6$ | $( 2,12)( 4, 6)( 5, 9)( 7,11)( 8,10)(14,15)$ |
3A | $3^{4},1^{3}$ | $40$ | $3$ | $8$ | $( 1, 9,12)( 2, 7,10)( 3,14, 6)( 5,13, 8)$ |
3B | $3^{5}$ | $40$ | $3$ | $10$ | $( 1, 9, 7)( 2,11, 6)( 3, 8, 4)( 5,15,10)(12,13,14)$ |
4A | $4^{3},2,1$ | $90$ | $4$ | $10$ | $( 1,13)( 2, 6,12, 4)( 5, 7, 9,11)( 8,14,10,15)$ |
5A1 | $5^{3}$ | $72$ | $5$ | $12$ | $( 1, 5, 7,14, 2)( 3,12,11,13, 6)( 4,10,15, 8, 9)$ |
5A2 | $5^{3}$ | $72$ | $5$ | $12$ | $( 1, 7, 2, 5,14)( 3,11, 6,12,13)( 4,15, 9,10, 8)$ |
Malle's constant $a(G)$: $1/6$
Character table
1A | 2A | 3A | 3B | 4A | 5A1 | 5A2 | ||
Size | 1 | 45 | 40 | 40 | 90 | 72 | 72 | |
2 P | 1A | 1A | 3A | 3B | 2A | 5A2 | 5A1 | |
3 P | 1A | 2A | 1A | 1A | 4A | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A | 3B | 4A | 1A | 1A | |
Type | ||||||||
360.118.1a | R | |||||||
360.118.5a | R | |||||||
360.118.5b | R | |||||||
360.118.8a1 | R | |||||||
360.118.8a2 | R | |||||||
360.118.9a | R | |||||||
360.118.10a | R |
Regular extensions
Data not computed