Learn more

Refine search


Results (1-50 of 80 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
256.a1 256.a \( 2^{8} \) $1$ $\Z/2\Z$ $-8$ $0.960251595$ $[0, 1, 0, -13, -21]$ \(y^2=x^3+x^2-13x-21\) $[(5, 8)]$
256.a2 256.a \( 2^{8} \) $1$ $\Z/2\Z$ $-8$ $0.480125797$ $[0, 1, 0, -3, 1]$ \(y^2=x^3+x^2-3x+1\) $[(0, 1)]$
256.d1 256.d \( 2^{8} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, -1, 0, -13, 21]$ \(y^2=x^3-x^2-13x+21\) $[ ]$
256.d2 256.d \( 2^{8} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, -1, 0, -3, -1]$ \(y^2=x^3-x^2-3x-1\) $[ ]$
2304.h1 2304.h \( 2^{8} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-8$ $2.112877375$ $[0, 0, 0, -120, -448]$ \(y^2=x^3-120x-448\) $[(-7, 7)]$
2304.h2 2304.h \( 2^{8} \cdot 3^{2} \) $1$ $\Z/2\Z$ $-8$ $1.056438687$ $[0, 0, 0, -30, 56]$ \(y^2=x^3-30x+56\) $[(2, 2)]$
2304.i1 2304.i \( 2^{8} \cdot 3^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 0, 0, -120, 448]$ \(y^2=x^3-120x+448\) $[ ]$
2304.i2 2304.i \( 2^{8} \cdot 3^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 0, 0, -30, -56]$ \(y^2=x^3-30x-56\) $[ ]$
6400.a1 6400.a \( 2^{8} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 1, 0, -333, 1963]$ \(y^2=x^3+x^2-333x+1963\) $[ ]$
6400.a2 6400.a \( 2^{8} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 1, 0, -83, -287]$ \(y^2=x^3+x^2-83x-287\) $[ ]$
6400.x1 6400.x \( 2^{8} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-8$ $4.759367983$ $[0, -1, 0, -333, -1963]$ \(y^2=x^3-x^2-333x-1963\) $[(-68/3, 217/3)]$
6400.x2 6400.x \( 2^{8} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-8$ $2.379683991$ $[0, -1, 0, -83, 287]$ \(y^2=x^3-x^2-83x+287\) $[(-2, 21)]$
12544.c1 12544.c \( 2^{8} \cdot 7^{2} \) $1$ $\Z/2\Z$ $-8$ $1.854270723$ $[0, 1, 0, -653, -5909]$ \(y^2=x^3+x^2-653x-5909\) $[(-11, 8)]$
12544.c2 12544.c \( 2^{8} \cdot 7^{2} \) $1$ $\Z/2\Z$ $-8$ $0.927135361$ $[0, 1, 0, -163, 657]$ \(y^2=x^3+x^2-163x+657\) $[(16, 49)]$
12544.n1 12544.n \( 2^{8} \cdot 7^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, -1, 0, -653, 5909]$ \(y^2=x^3-x^2-653x+5909\) $[ ]$
12544.n2 12544.n \( 2^{8} \cdot 7^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, -1, 0, -163, -657]$ \(y^2=x^3-x^2-163x-657\) $[ ]$
30976.a1 30976.a \( 2^{8} \cdot 11^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 1, 0, -1613, 21547]$ \(y^2=x^3+x^2-1613x+21547\) $[ ]$
30976.a2 30976.a \( 2^{8} \cdot 11^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 1, 0, -403, -2895]$ \(y^2=x^3+x^2-403x-2895\) $[ ]$
30976.h1 30976.h \( 2^{8} \cdot 11^{2} \) $1$ $\Z/2\Z$ $-8$ $10.76473485$ $[0, -1, 0, -1613, -21547]$ \(y^2=x^3-x^2-1613x-21547\) $[(1472299, 1786462392)]$
30976.h2 30976.h \( 2^{8} \cdot 11^{2} \) $1$ $\Z/2\Z$ $-8$ $5.382367428$ $[0, -1, 0, -403, 2895]$ \(y^2=x^3-x^2-403x+2895\) $[(-203/3, 26/3)]$
43264.c1 43264.c \( 2^{8} \cdot 13^{2} \) $1$ $\Z/2\Z$ $-8$ $5.769753780$ $[0, 1, 0, -2253, -37205]$ \(y^2=x^3+x^2-2253x-37205\) $[(-266/3, 1799/3)]$
43264.c2 43264.c \( 2^{8} \cdot 13^{2} \) $1$ $\Z/2\Z$ $-8$ $2.884876890$ $[0, 1, 0, -563, 4369]$ \(y^2=x^3+x^2-563x+4369\) $[(8, 21)]$
43264.z1 43264.z \( 2^{8} \cdot 13^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, -1, 0, -2253, 37205]$ \(y^2=x^3-x^2-2253x+37205\) $[ ]$
43264.z2 43264.z \( 2^{8} \cdot 13^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, -1, 0, -563, -4369]$ \(y^2=x^3-x^2-563x-4369\) $[ ]$
57600.bk1 57600.bk \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-8$ $3.742756077$ $[0, 0, 0, -3000, -56000]$ \(y^2=x^3-3000x-56000\) $[(-39, 41)]$
57600.bk2 57600.bk \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-8$ $1.871378038$ $[0, 0, 0, -750, 7000]$ \(y^2=x^3-750x+7000\) $[(11, 9)]$
57600.ch1 57600.ch \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 0, 0, -3000, 56000]$ \(y^2=x^3-3000x+56000\) $[ ]$
57600.ch2 57600.ch \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 0, 0, -750, -7000]$ \(y^2=x^3-750x-7000\) $[ ]$
73984.a1 73984.a \( 2^{8} \cdot 17^{2} \) $2$ $\Z/2\Z$ $-8$ $4.167180624$ $[0, 1, 0, -3853, 80235]$ \(y^2=x^3+x^2-3853x+80235\) $[(62, 289), (470, 10115)]$
73984.a2 73984.a \( 2^{8} \cdot 17^{2} \) $2$ $\Z/2\Z$ $-8$ $4.167180624$ $[0, 1, 0, -963, -10511]$ \(y^2=x^3+x^2-963x-10511\) $[(113, 1156), (-15, 28)]$
73984.p1 73984.p \( 2^{8} \cdot 17^{2} \) $1$ $\Z/2\Z$ $-8$ $2.127068217$ $[0, -1, 0, -3853, -80235]$ \(y^2=x^3-x^2-3853x-80235\) $[(108, 867)]$
73984.p2 73984.p \( 2^{8} \cdot 17^{2} \) $1$ $\Z/2\Z$ $-8$ $4.254136434$ $[0, -1, 0, -963, 10511]$ \(y^2=x^3-x^2-963x+10511\) $[(95, 876)]$
92416.c1 92416.c \( 2^{8} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-8$ $7.155820499$ $[0, 1, 0, -4813, -115413]$ \(y^2=x^3+x^2-4813x-115413\) $[(-986/5, 15113/5)]$
92416.c2 92416.c \( 2^{8} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-8$ $3.577910249$ $[0, 1, 0, -1203, 13825]$ \(y^2=x^3+x^2-1203x+13825\) $[(-25, 170)]$
92416.bt1 92416.bt \( 2^{8} \cdot 19^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, -1, 0, -4813, 115413]$ \(y^2=x^3-x^2-4813x+115413\) $[ ]$
92416.bt2 92416.bt \( 2^{8} \cdot 19^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, -1, 0, -1203, -13825]$ \(y^2=x^3-x^2-1203x-13825\) $[ ]$
112896.bz1 112896.bz \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $2$ $\Z/2\Z$ $-8$ $3.589260903$ $[0, 0, 0, -5880, 153664]$ \(y^2=x^3-5880x+153664\) $[(0, 392), (105, 833)]$
112896.bz2 112896.bz \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $2$ $\Z/2\Z$ $-8$ $3.589260903$ $[0, 0, 0, -1470, -19208]$ \(y^2=x^3-1470x-19208\) $[(-21, 49), (44, 36)]$
112896.ci1 112896.ci \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $-8$ $3.479426394$ $[0, 0, 0, -5880, -153664]$ \(y^2=x^3-5880x-153664\) $[(232, 3312)]$
112896.ci2 112896.ci \( 2^{8} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $-8$ $1.739713197$ $[0, 0, 0, -1470, 19208]$ \(y^2=x^3-1470x+19208\) $[(-28, 196)]$
135424.a1 135424.a \( 2^{8} \cdot 23^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 1, 0, -7053, 199531]$ \(y^2=x^3+x^2-7053x+199531\) $[ ]$
135424.a2 135424.a \( 2^{8} \cdot 23^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 1, 0, -1763, -25823]$ \(y^2=x^3+x^2-1763x-25823\) $[ ]$
135424.t1 135424.t \( 2^{8} \cdot 23^{2} \) $1$ $\Z/2\Z$ $-8$ $8.760920407$ $[0, -1, 0, -7053, -199531]$ \(y^2=x^3-x^2-7053x-199531\) $[(-14101/17, 793128/17)]$
135424.t2 135424.t \( 2^{8} \cdot 23^{2} \) $1$ $\Z/2\Z$ $-8$ $4.380460203$ $[0, -1, 0, -1763, 25823]$ \(y^2=x^3-x^2-1763x+25823\) $[(2533/3, 125902/3)]$
215296.c1 215296.c \( 2^{8} \cdot 29^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 1, 0, -11213, 400939]$ \(y^2=x^3+x^2-11213x+400939\) $[ ]$
215296.c2 215296.c \( 2^{8} \cdot 29^{2} \) $0$ $\Z/2\Z$ $-8$ $1$ $[0, 1, 0, -2803, -51519]$ \(y^2=x^3+x^2-2803x-51519\) $[ ]$
215296.v1 215296.v \( 2^{8} \cdot 29^{2} \) $1$ $\Z/2\Z$ $-8$ $28.91158430$ $[0, -1, 0, -11213, -400939]$ \(y^2=x^3-x^2-11213x-400939\) $[(-2390221562636/217095, 1906444099357961113/217095)]$
215296.v2 215296.v \( 2^{8} \cdot 29^{2} \) $1$ $\Z/2\Z$ $-8$ $14.45579215$ $[0, -1, 0, -2803, 51519]$ \(y^2=x^3-x^2-2803x+51519\) $[(517494/205, 1178685003/205)]$
246016.b1 246016.b \( 2^{8} \cdot 31^{2} \) $1$ $\Z/2\Z$ $-8$ $4.555391195$ $[0, 1, 0, -12813, -498581]$ \(y^2=x^3+x^2-12813x-498581\) $[(205, 2352)]$
246016.b2 246016.b \( 2^{8} \cdot 31^{2} \) $1$ $\Z/2\Z$ $-8$ $2.277695597$ $[0, 1, 0, -3203, 60721]$ \(y^2=x^3+x^2-3203x+60721\) $[(-115/2, 2883/2)]$
Next   displayed columns for results