Properties

Label 256a1
Conductor $256$
Discriminant $512$
j-invariant \( 8000 \)
CM yes (\(D=-8\))
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3+x^2-3x+1\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3+x^2z-3xz^2+z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-270x+1512\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -3, 1])
 
gp: E = ellinit([0, 1, 0, -3, 1])
 
magma: E := EllipticCurve([0, 1, 0, -3, 1]);
 
oscar: E = elliptic_curve([0, 1, 0, -3, 1])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(0, 1\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $0.48012579750829764693652026591$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Torsion generators

\( \left(1, 0\right) \) Copy content Toggle raw display

comment: Torsion subgroup
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 
oscar: torsion_structure(E)
 

Integral points

\((-1,\pm 2)\), \((0,\pm 1)\), \( \left(1, 0\right) \), \((9,\pm 28)\) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 256 \)  =  $2^{8}$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $512 $  =  $2^{9} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( 8000 \)  =  $2^{6} \cdot 5^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z[\sqrt{-2}]\) (potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$
Faltings height: $-0.75054624063986677446489366634\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $-1.2704066260598257565278177574\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $0.9029767420170889\dots$
Szpiro ratio: $2.745723035582761\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $0.48012579750829764693652026591\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $5.0378540936193068771615222380\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 2 $  = $ 2 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $2$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 1.2094018572147058551904833617 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 1.209401857 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 5.037854 \cdot 0.480126 \cdot 2}{2^2} \approx 1.209401857$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   256.2.a.a

\( q - 2 q^{3} + q^{9} - 6 q^{11} - 6 q^{17} - 2 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 8
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data

This elliptic curve is not semistable. There is only one prime $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $v_p(N)$ $v_p(\Delta)$ $v_p(\mathrm{den}(j))$
$2$ $2$ $III$ additive 1 8 9 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 16.192.5.607

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ additive $4$ \( 1 \)

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 256a consists of 2 curves linked by isogenies of degree 2.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{2}) \) \(\Z/2\Z \oplus \Z/2\Z\) 2.2.8.1-1024.1-d4
$4$ \(\Q(\zeta_{16})^+\) \(\Z/2\Z \oplus \Z/4\Z\) not in database
$4$ 4.0.6144.1 \(\Z/6\Z\) not in database
$4$ 4.2.18432.2 \(\Z/6\Z\) not in database
$8$ 8.0.67108864.1 \(\Z/2\Z \oplus \Z/4\Z\) not in database
$8$ 8.4.67108864.1 \(\Z/2\Z \oplus \Z/8\Z\) not in database
$8$ 8.0.339738624.10 \(\Z/3\Z \oplus \Z/6\Z\) not in database
$8$ 8.0.150994944.2 \(\Z/2\Z \oplus \Z/6\Z\) not in database
$8$ 8.4.1358954496.3 \(\Z/2\Z \oplus \Z/6\Z\) not in database
$12$ 12.0.169075682574336.4 \(\Z/18\Z\) not in database
$16$ 16.0.18014398509481984.1 \(\Z/4\Z \oplus \Z/8\Z\) not in database
$16$ 16.0.1846757322198614016.7 \(\Z/6\Z \oplus \Z/6\Z\) not in database
$16$ 16.0.364791569817010176.1 \(\Z/2\Z \oplus \Z/12\Z\) not in database
$16$ 16.8.29548117155177824256.1 \(\Z/2\Z \oplus \Z/12\Z\) not in database
$20$ 20.0.84954018740373771557797888.2 \(\Z/22\Z\) not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord ss ss ord ss ord ord ss ss ss ss ord ord ss
$\lambda$-invariant(s) - 3 1,1 3,1 1 1,1 1 1 1,1 1,1 1,1 1,1 1 1 3,1
$\mu$-invariant(s) - 0 0,0 0,0 0 0,0 0 0 0,0 0,0 0,0 0,0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

$p$-adic regulators

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.