Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 2304c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
2304.i2 | 2304c1 | \([0, 0, 0, -30, -56]\) | \(8000\) | \(373248\) | \([2]\) | \(192\) | \(-0.20124\) | \(\Gamma_0(N)\)-optimal | \(-8\) |
2304.i1 | 2304c2 | \([0, 0, 0, -120, 448]\) | \(8000\) | \(23887872\) | \([2]\) | \(384\) | \(0.14533\) | \(-8\) |
Rank
sage: E.rank()
The elliptic curves in class 2304c have rank \(0\).
Complex multiplication
Each elliptic curve in class 2304c has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-2}) \).Modular form 2304.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.