Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
550.a1 |
550d2 |
550.a |
550d |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \) |
\( - 2^{3} \cdot 5^{8} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$264$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$540$ |
$0.568795$ |
$-53969305/10648$ |
$0.89387$ |
$4.90859$ |
$[1, 0, 1, -576, -6202]$ |
\(y^2+xy+y=x^3-576x-6202\) |
3.8.0-3.a.1.1, 88.2.0.?, 264.16.0.? |
$[ ]$ |
550.m1 |
550h2 |
550.m |
550h |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \) |
\( - 2^{3} \cdot 5^{2} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$108$ |
$-0.235924$ |
$-53969305/10648$ |
$0.89387$ |
$3.37820$ |
$[1, 1, 1, -23, -59]$ |
\(y^2+xy+y=x^3+x^2-23x-59\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 88.2.0.?, 264.8.0.?, 1320.16.0.? |
$[ ]$ |
4400.d1 |
4400u2 |
4400.d |
4400u |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 11 \) |
\( - 2^{15} \cdot 5^{2} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$0.118600898$ |
$1$ |
|
$8$ |
$2592$ |
$0.457223$ |
$-53969305/10648$ |
$0.89387$ |
$3.53232$ |
$[0, 1, 0, -368, 3028]$ |
\(y^2=x^3+x^2-368x+3028\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 88.2.0.?, 264.8.0.?, 1320.16.0.? |
$[(34, 176)]$ |
4400.bc1 |
4400bc2 |
4400.bc |
4400bc |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 11 \) |
\( - 2^{15} \cdot 5^{8} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12960$ |
$1.261942$ |
$-53969305/10648$ |
$0.89387$ |
$4.68338$ |
$[0, -1, 0, -9208, 396912]$ |
\(y^2=x^3-x^2-9208x+396912\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 88.2.0.?, 264.16.0.? |
$[ ]$ |
4950.u1 |
4950p2 |
4950.u |
4950p |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{2} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$0.305011618$ |
$1$ |
|
$4$ |
$2592$ |
$0.313382$ |
$-53969305/10648$ |
$0.89387$ |
$3.28052$ |
$[1, -1, 0, -207, 1381]$ |
\(y^2+xy=x^3-x^2-207x+1381\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 88.2.0.?, 264.8.0.?, 1320.16.0.? |
$[(-7, 53)]$ |
4950.y1 |
4950bu2 |
4950.y |
4950bu |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{8} \cdot 11^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$264$ |
$16$ |
$0$ |
$1.127570059$ |
$1$ |
|
$8$ |
$12960$ |
$1.118101$ |
$-53969305/10648$ |
$0.89387$ |
$4.41564$ |
$[1, -1, 1, -5180, 167447]$ |
\(y^2+xy+y=x^3-x^2-5180x+167447\) |
3.8.0-3.a.1.2, 88.2.0.?, 264.16.0.? |
$[(63, 265)]$ |
6050.n1 |
6050k2 |
6050.n |
6050k |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12960$ |
$0.963024$ |
$-53969305/10648$ |
$0.89387$ |
$4.10017$ |
$[1, 1, 0, -2785, 64365]$ |
\(y^2+xy=x^3+x^2-2785x+64365\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 165.8.0.?, 264.8.0.?, $\ldots$ |
$[ ]$ |
6050.bb1 |
6050bn2 |
6050.bb |
6050bn |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$64800$ |
$1.767742$ |
$-53969305/10648$ |
$0.89387$ |
$5.20913$ |
$[1, 0, 0, -69638, 8184892]$ |
\(y^2+xy=x^3-69638x+8184892\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 33.8.0-3.a.1.1, 88.2.0.?, 264.16.0.? |
$[ ]$ |
17600.s1 |
17600cx2 |
17600.s |
17600cx |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \) |
\( - 2^{21} \cdot 5^{8} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$0.601121042$ |
$1$ |
|
$4$ |
$103680$ |
$1.608517$ |
$-53969305/10648$ |
$0.89387$ |
$4.44466$ |
$[0, 1, 0, -36833, 3138463]$ |
\(y^2=x^3+x^2-36833x+3138463\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 88.2.0.?, 132.8.0.?, 264.16.0.? |
$[(183, 1600)]$ |
17600.x1 |
17600s2 |
17600.x |
17600s |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \) |
\( - 2^{21} \cdot 5^{2} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20736$ |
$0.803797$ |
$-53969305/10648$ |
$0.89387$ |
$3.45683$ |
$[0, 1, 0, -1473, -25697]$ |
\(y^2=x^3+x^2-1473x-25697\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 264.8.0.?, 330.8.0.?, $\ldots$ |
$[ ]$ |
17600.cq1 |
17600bw2 |
17600.cq |
17600bw |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \) |
\( - 2^{21} \cdot 5^{2} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20736$ |
$0.803797$ |
$-53969305/10648$ |
$0.89387$ |
$3.45683$ |
$[0, -1, 0, -1473, 25697]$ |
\(y^2=x^3-x^2-1473x+25697\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 264.8.0.?, 660.8.0.?, $\ldots$ |
$[ ]$ |
17600.cr1 |
17600bh2 |
17600.cr |
17600bh |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 11 \) |
\( - 2^{21} \cdot 5^{8} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$0.989547658$ |
$1$ |
|
$2$ |
$103680$ |
$1.608517$ |
$-53969305/10648$ |
$0.89387$ |
$4.44466$ |
$[0, -1, 0, -36833, -3138463]$ |
\(y^2=x^3-x^2-36833x-3138463\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 66.8.0-3.a.1.2, 88.2.0.?, 264.16.0.? |
$[(1417, 52800)]$ |
26950.bi1 |
26950bi2 |
26950.bi |
26950bi |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{3} \cdot 5^{8} \cdot 7^{6} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1848$ |
$16$ |
$0$ |
$1.804337718$ |
$1$ |
|
$2$ |
$155520$ |
$1.541750$ |
$-53969305/10648$ |
$0.89387$ |
$4.18049$ |
$[1, 1, 0, -28200, 2099000]$ |
\(y^2+xy=x^3+x^2-28200x+2099000\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 88.2.0.?, 264.8.0.?, 1848.16.0.? |
$[(335, 5345)]$ |
26950.by1 |
26950ck2 |
26950.by |
26950ck |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{3} \cdot 5^{2} \cdot 7^{6} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9240$ |
$16$ |
$0$ |
$0.893084267$ |
$1$ |
|
$4$ |
$31104$ |
$0.737031$ |
$-53969305/10648$ |
$0.89387$ |
$3.23392$ |
$[1, 0, 0, -1128, 16792]$ |
\(y^2+xy=x^3-1128x+16792\) |
3.4.0.a.1, 88.2.0.?, 105.8.0.?, 264.8.0.?, 9240.16.0.? |
$[(18, 40)]$ |
39600.b1 |
39600dn2 |
39600.b |
39600dn |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{2} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$3.240515949$ |
$1$ |
|
$2$ |
$62208$ |
$1.006529$ |
$-53969305/10648$ |
$0.89387$ |
$3.42184$ |
$[0, 0, 0, -3315, -85070]$ |
\(y^2=x^3-3315x-85070\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 88.2.0.?, 264.8.0.?, 1320.16.0.? |
$[(119, 1098)]$ |
39600.ey1 |
39600er2 |
39600.ey |
39600er |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{8} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$311040$ |
$1.811249$ |
$-53969305/10648$ |
$0.89387$ |
$4.33400$ |
$[0, 0, 0, -82875, -10633750]$ |
\(y^2=x^3-82875x-10633750\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 88.2.0.?, 264.16.0.? |
$[ ]$ |
48400.x1 |
48400cq2 |
48400.x |
48400cq |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{15} \cdot 5^{2} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$3.731181968$ |
$1$ |
|
$2$ |
$311040$ |
$1.656172$ |
$-53969305/10648$ |
$0.89387$ |
$4.08086$ |
$[0, 1, 0, -44568, -4208492]$ |
\(y^2=x^3+x^2-44568x-4208492\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 264.8.0.?, 660.8.0.?, $\ldots$ |
$[(2647, 135762)]$ |
48400.cv1 |
48400dd2 |
48400.cv |
48400dd |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{15} \cdot 5^{8} \cdot 11^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$9.912770430$ |
$1$ |
|
$6$ |
$1555200$ |
$2.460892$ |
$-53969305/10648$ |
$0.89387$ |
$4.97605$ |
$[0, -1, 0, -1114208, -523833088]$ |
\(y^2=x^3-x^2-1114208x-523833088\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 88.2.0.?, 132.8.0.?, 264.16.0.? |
$[(1258, 7986), (13984/3, 1043504/3)]$ |
54450.dh1 |
54450ds2 |
54450.dh |
54450ds |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{8} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1555200$ |
$2.317047$ |
$-53969305/10648$ |
$0.89387$ |
$4.76402$ |
$[1, -1, 0, -626742, -220992084]$ |
\(y^2+xy=x^3-x^2-626742x-220992084\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 33.8.0-3.a.1.2, 88.2.0.?, 264.16.0.? |
$[ ]$ |
54450.eg1 |
54450gh2 |
54450.eg |
54450gh |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{2} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$311040$ |
$1.512329$ |
$-53969305/10648$ |
$0.89387$ |
$3.87850$ |
$[1, -1, 1, -25070, -1762923]$ |
\(y^2+xy+y=x^3-x^2-25070x-1762923\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 165.8.0.?, 264.8.0.?, $\ldots$ |
$[ ]$ |
92950.y1 |
92950p2 |
92950.y |
92950p |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 11^{3} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221616$ |
$1.046551$ |
$-53969305/10648$ |
$0.89387$ |
$3.20861$ |
$[1, 1, 0, -3890, -109780]$ |
\(y^2+xy=x^3+x^2-3890x-109780\) |
3.4.0.a.1, 88.2.0.?, 195.8.0.?, 264.8.0.?, 17160.16.0.? |
$[ ]$ |
92950.cb1 |
92950da2 |
92950.cb |
92950da |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 11^{3} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3432$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1108080$ |
$1.851271$ |
$-53969305/10648$ |
$0.89387$ |
$4.05273$ |
$[1, 0, 0, -97263, -13527983]$ |
\(y^2+xy=x^3-97263x-13527983\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 88.2.0.?, 264.8.0.?, 3432.16.0.? |
$[ ]$ |
158400.i1 |
158400id2 |
158400.i |
158400id |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{21} \cdot 3^{6} \cdot 5^{8} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$4.442232306$ |
$1$ |
|
$2$ |
$2488320$ |
$2.157822$ |
$-53969305/10648$ |
$0.89387$ |
$4.17954$ |
$[0, 0, 0, -331500, 85070000]$ |
\(y^2=x^3-331500x+85070000\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 66.8.0-3.a.1.1, 88.2.0.?, 264.16.0.? |
$[(196, 5256)]$ |
158400.bn1 |
158400cf2 |
158400.bn |
158400cf |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{21} \cdot 3^{6} \cdot 5^{2} \cdot 11^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$2.294466790$ |
$1$ |
|
$12$ |
$497664$ |
$1.353104$ |
$-53969305/10648$ |
$0.89387$ |
$3.37300$ |
$[0, 0, 0, -13260, -680560]$ |
\(y^2=x^3-13260x-680560\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 264.8.0.?, 660.8.0.?, $\ldots$ |
$[(146, 704), (274, 4032)]$ |
158400.oe1 |
158400nl2 |
158400.oe |
158400nl |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{21} \cdot 3^{6} \cdot 5^{2} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$497664$ |
$1.353104$ |
$-53969305/10648$ |
$0.89387$ |
$3.37300$ |
$[0, 0, 0, -13260, 680560]$ |
\(y^2=x^3-13260x+680560\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 264.8.0.?, 330.8.0.?, $\ldots$ |
$[ ]$ |
158400.og1 |
158400by2 |
158400.og |
158400by |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 2^{21} \cdot 3^{6} \cdot 5^{8} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$6.895314158$ |
$1$ |
|
$2$ |
$2488320$ |
$2.157822$ |
$-53969305/10648$ |
$0.89387$ |
$4.17954$ |
$[0, 0, 0, -331500, -85070000]$ |
\(y^2=x^3-331500x-85070000\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 88.2.0.?, 132.8.0.?, 264.16.0.? |
$[(2621, 130581)]$ |
158950.bo1 |
158950dm2 |
158950.bo |
158950dm |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 17^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 11^{3} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4488$ |
$16$ |
$0$ |
$4.702818662$ |
$1$ |
|
$0$ |
$2799360$ |
$1.985401$ |
$-53969305/10648$ |
$0.89387$ |
$4.00557$ |
$[1, 1, 0, -166325, -30302875]$ |
\(y^2+xy=x^3+x^2-166325x-30302875\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 88.2.0.?, 264.8.0.?, 4488.16.0.? |
$[(7081/3, 477355/3)]$ |
158950.bu1 |
158950i2 |
158950.bu |
158950i |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 17^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 11^{3} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$22440$ |
$16$ |
$0$ |
$0.728633229$ |
$1$ |
|
$4$ |
$559872$ |
$1.180683$ |
$-53969305/10648$ |
$0.89387$ |
$3.19926$ |
$[1, 0, 0, -6653, -242423]$ |
\(y^2+xy=x^3-6653x-242423\) |
3.4.0.a.1, 88.2.0.?, 255.8.0.?, 264.8.0.?, 22440.16.0.? |
$[(228, 3065)]$ |
193600.s1 |
193600gd2 |
193600.s |
193600gd |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{21} \cdot 5^{2} \cdot 11^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1.337987087$ |
$1$ |
|
$8$ |
$2488320$ |
$2.002743$ |
$-53969305/10648$ |
$0.89387$ |
$3.95778$ |
$[0, 1, 0, -178273, 33489663]$ |
\(y^2=x^3+x^2-178273x+33489663\) |
3.4.0.a.1, 30.8.0-3.a.1.2, 88.2.0.?, 264.8.0.?, 1320.16.0.? |
$[(29, 5324), (2923/3, 85184/3)]$ |
193600.v1 |
193600i2 |
193600.v |
193600i |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{21} \cdot 5^{8} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12441600$ |
$2.807465$ |
$-53969305/10648$ |
$0.89387$ |
$4.75102$ |
$[0, 1, 0, -4456833, -4195121537]$ |
\(y^2=x^3+x^2-4456833x-4195121537\) |
3.4.0.a.1, 12.8.0-3.a.1.4, 88.2.0.?, 264.16.0.? |
$[ ]$ |
193600.iv1 |
193600ey2 |
193600.iv |
193600ey |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{21} \cdot 5^{2} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$14.52828644$ |
$1$ |
|
$0$ |
$2488320$ |
$2.002743$ |
$-53969305/10648$ |
$0.89387$ |
$3.95778$ |
$[0, -1, 0, -178273, -33489663]$ |
\(y^2=x^3-x^2-178273x-33489663\) |
3.4.0.a.1, 60.8.0-3.a.1.3, 88.2.0.?, 264.8.0.?, 1320.16.0.? |
$[(24357133/111, 117137636416/111)]$ |
193600.iy1 |
193600ja2 |
193600.iy |
193600ja |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{21} \cdot 5^{8} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$4.246033235$ |
$1$ |
|
$0$ |
$12441600$ |
$2.807465$ |
$-53969305/10648$ |
$0.89387$ |
$4.75102$ |
$[0, -1, 0, -4456833, 4195121537]$ |
\(y^2=x^3-x^2-4456833x+4195121537\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 88.2.0.?, 264.16.0.? |
$[(-4303/4, 4691775/4)]$ |
198550.i1 |
198550cb2 |
198550.i |
198550cb |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 11^{3} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$25080$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$682344$ |
$1.236296$ |
$-53969305/10648$ |
$0.89387$ |
$3.19563$ |
$[1, 0, 1, -8311, 336978]$ |
\(y^2+xy+y=x^3-8311x+336978\) |
3.4.0.a.1, 88.2.0.?, 264.8.0.?, 285.8.0.?, 25080.16.0.? |
$[ ]$ |
198550.db1 |
198550bk2 |
198550.db |
198550bk |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 11^{3} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5016$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3411720$ |
$2.041016$ |
$-53969305/10648$ |
$0.89387$ |
$3.98723$ |
$[1, 1, 1, -207763, 42122281]$ |
\(y^2+xy+y=x^3+x^2-207763x+42122281\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 88.2.0.?, 264.8.0.?, 5016.16.0.? |
$[ ]$ |
215600.bk1 |
215600i2 |
215600.bk |
215600i |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{15} \cdot 5^{8} \cdot 7^{6} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1848$ |
$16$ |
$0$ |
$0.935425168$ |
$1$ |
|
$6$ |
$3732480$ |
$2.234898$ |
$-53969305/10648$ |
$0.89387$ |
$4.14993$ |
$[0, 1, 0, -451208, -135238412]$ |
\(y^2=x^3+x^2-451208x-135238412\) |
3.4.0.a.1, 84.8.0.?, 88.2.0.?, 264.8.0.?, 1848.16.0.? |
$[(1108, 26950)]$ |
215600.ht1 |
215600ey2 |
215600.ht |
215600ey |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{15} \cdot 5^{2} \cdot 7^{6} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9240$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$746496$ |
$1.430178$ |
$-53969305/10648$ |
$0.89387$ |
$3.36363$ |
$[0, -1, 0, -18048, -1074688]$ |
\(y^2=x^3-x^2-18048x-1074688\) |
3.4.0.a.1, 88.2.0.?, 264.8.0.?, 420.8.0.?, 9240.16.0.? |
$[ ]$ |
242550.hi1 |
242550hi2 |
242550.hi |
242550hi |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{2} \cdot 7^{6} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9240$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$746496$ |
$1.286337$ |
$-53969305/10648$ |
$0.89387$ |
$3.19247$ |
$[1, -1, 0, -10152, -453384]$ |
\(y^2+xy=x^3-x^2-10152x-453384\) |
3.4.0.a.1, 88.2.0.?, 105.8.0.?, 264.8.0.?, 9240.16.0.? |
$[ ]$ |
242550.lu1 |
242550lu2 |
242550.lu |
242550lu |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{8} \cdot 7^{6} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1848$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3732480$ |
$2.091057$ |
$-53969305/10648$ |
$0.89387$ |
$3.97129$ |
$[1, -1, 1, -253805, -56926803]$ |
\(y^2+xy+y=x^3-x^2-253805x-56926803\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 88.2.0.?, 264.8.0.?, 1848.16.0.? |
$[ ]$ |
290950.n1 |
290950n2 |
290950.n |
290950n |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 23^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 11^{3} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6072$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6735960$ |
$2.136543$ |
$-53969305/10648$ |
$0.89387$ |
$3.95725$ |
$[1, 0, 1, -304451, 74847798]$ |
\(y^2+xy+y=x^3-304451x+74847798\) |
3.4.0.a.1, 69.8.0-3.a.1.1, 88.2.0.?, 264.8.0.?, 6072.16.0.? |
$[ ]$ |
290950.dx1 |
290950dx2 |
290950.dx |
290950dx |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 23^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 11^{3} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30360$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1347192$ |
$1.331823$ |
$-53969305/10648$ |
$0.89387$ |
$3.18969$ |
$[1, 1, 1, -12178, 593911]$ |
\(y^2+xy+y=x^3+x^2-12178x+593911\) |
3.4.0.a.1, 88.2.0.?, 264.8.0.?, 345.8.0.?, 30360.16.0.? |
$[ ]$ |
296450.m1 |
296450m2 |
296450.m |
296450m |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 7^{6} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9240$ |
$16$ |
$0$ |
$3.586840734$ |
$1$ |
|
$0$ |
$3732480$ |
$1.935978$ |
$-53969305/10648$ |
$0.89387$ |
$3.76035$ |
$[1, 0, 1, -136491, -22486642]$ |
\(y^2+xy+y=x^3-136491x-22486642\) |
3.4.0.a.1, 88.2.0.?, 264.8.0.?, 840.8.0.?, 1155.8.0.?, $\ldots$ |
$[(1899/2, 33671/2)]$ |
296450.kk1 |
296450kk2 |
296450.kk |
296450kk |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 7^{6} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1848$ |
$16$ |
$0$ |
$9.887913838$ |
$1$ |
|
$0$ |
$18662400$ |
$2.740696$ |
$-53969305/10648$ |
$0.89387$ |
$4.52677$ |
$[1, 1, 1, -3412263, -2810830219]$ |
\(y^2+xy+y=x^3+x^2-3412263x-2810830219\) |
3.4.0.a.1, 88.2.0.?, 168.8.0.?, 231.8.0.?, 264.8.0.?, $\ldots$ |
$[(19998765/23, 89096766794/23)]$ |
435600.y1 |
435600y2 |
435600.y |
435600y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{8} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1.547325249$ |
$1$ |
|
$4$ |
$37324800$ |
$3.010197$ |
$-53969305/10648$ |
$0.89387$ |
$4.64166$ |
$[0, 0, 0, -10027875, 14153521250]$ |
\(y^2=x^3-10027875x+14153521250\) |
3.4.0.a.1, 24.8.0-3.a.1.8, 88.2.0.?, 132.8.0.?, 264.16.0.? |
$[(1375, 54450)]$ |
435600.tt1 |
435600tt2 |
435600.tt |
435600tt |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{2} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7464960$ |
$2.205479$ |
$-53969305/10648$ |
$0.89387$ |
$3.89796$ |
$[0, 0, 0, -401115, 113228170]$ |
\(y^2=x^3-401115x+113228170\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 264.8.0.?, 660.8.0.?, $\ldots$ |
$[ ]$ |
462550.i1 |
462550i2 |
462550.i |
462550i |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 11^{3} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$38280$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2694384$ |
$1.447723$ |
$-53969305/10648$ |
$0.89387$ |
$3.18294$ |
$[1, 0, 1, -19361, -1202292]$ |
\(y^2+xy+y=x^3-19361x-1202292\) |
3.4.0.a.1, 88.2.0.?, 264.8.0.?, 435.8.0.?, 38280.16.0.? |
$[ ]$ |
462550.cj1 |
462550cj2 |
462550.cj |
462550cj |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11 \cdot 29^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 11^{3} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7656$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$13471920$ |
$2.252441$ |
$-53969305/10648$ |
$0.89387$ |
$3.92323$ |
$[1, 1, 1, -484013, -150286469]$ |
\(y^2+xy+y=x^3+x^2-484013x-150286469\) |
3.4.0.a.1, 87.8.0.?, 88.2.0.?, 264.8.0.?, 7656.16.0.? |
$[ ]$ |