Properties

 Label 48400cq Number of curves 2 Conductor 48400 CM no Rank 1 Graph

Related objects

Show commands for: SageMath
sage: E = EllipticCurve("48400.x1")

sage: E.isogeny_class()

Elliptic curves in class 48400cq

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
48400.x2 48400cq1 [0, 1, 0, 3832, 31348] [] 103680 $$\Gamma_0(N)$$-optimal
48400.x1 48400cq2 [0, 1, 0, -44568, -4208492] [] 311040

Rank

sage: E.rank()

The elliptic curves in class 48400cq have rank $$1$$.

Modular form 48400.2.a.x

sage: E.q_eigenform(10)

$$q - 2q^{3} + 4q^{7} + q^{9} + 5q^{13} - 7q^{19} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.