# Properties

 Label 193600gd Number of curves 2 Conductor 193600 CM no Rank 2 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("193600.s1")

sage: E.isogeny_class()

## Elliptic curves in class 193600gd

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
193600.s2 193600gd1 [0, 1, 0, 15327, -235457] [] 829440 $$\Gamma_0(N)$$-optimal
193600.s1 193600gd2 [0, 1, 0, -178273, 33489663] [] 2488320

## Rank

sage: E.rank()

The elliptic curves in class 193600gd have rank $$2$$.

## Modular form 193600.2.a.s

sage: E.q_eigenform(10)

$$q - 2q^{3} - 4q^{7} + q^{9} - 5q^{13} - 7q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 