Learn more

Refine search


Results (1-50 of 59574 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
1001.a1 1001.a \( 7 \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.036010745$ $[0, 0, 1, -199, 1092]$ \(y^2+y=x^3-199x+1092\)
1001.b1 1001.b \( 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -9916, -377564]$ \(y^2+xy+y=x^3-x^2-9916x-377564\)
1001.b2 1001.b \( 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1006, 2552]$ \(y^2+xy+y=x^3-x^2-1006x+2552\)
1001.b3 1001.b \( 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -621, -5764]$ \(y^2+xy+y=x^3-x^2-621x-5764\)
1001.b4 1001.b \( 7 \cdot 11 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -16, -198]$ \(y^2+xy+y=x^3-x^2-16x-198\)
1001.c1 1001.c \( 7 \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.562389412$ $[0, -1, 1, -15881, 778423]$ \(y^2+y=x^3-x^2-15881x+778423\)
1002.a1 1002.a \( 2 \cdot 3 \cdot 167 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -860, -10074]$ \(y^2+xy=x^3+x^2-860x-10074\)
1002.a2 1002.a \( 2 \cdot 3 \cdot 167 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -50, -192]$ \(y^2+xy=x^3+x^2-50x-192\)
1002.b1 1002.b \( 2 \cdot 3 \cdot 167 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 564, 1872]$ \(y^2+xy=x^3+x^2+564x+1872\)
1002.c1 1002.c \( 2 \cdot 3 \cdot 167 \) $1$ $\mathsf{trivial}$ $0.108540171$ $[1, 0, 1, -3264, 71590]$ \(y^2+xy+y=x^3-3264x+71590\)
1002.d1 1002.d \( 2 \cdot 3 \cdot 167 \) $1$ $\Z/2\Z$ $3.021502052$ $[1, 0, 1, -125, -544]$ \(y^2+xy+y=x^3-125x-544\)
1002.d2 1002.d \( 2 \cdot 3 \cdot 167 \) $1$ $\Z/2\Z$ $1.510751026$ $[1, 0, 1, -5, -16]$ \(y^2+xy+y=x^3-5x-16\)
1002.e1 1002.e \( 2 \cdot 3 \cdot 167 \) $1$ $\mathsf{trivial}$ $0.048234294$ $[1, 0, 0, -27, 81]$ \(y^2+xy=x^3-27x+81\)
1003.a1 1003.a \( 17 \cdot 59 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 63, -332]$ \(y^2+xy+y=x^3-x^2+63x-332\)
1003.b1 1003.b \( 17 \cdot 59 \) $1$ $\mathsf{trivial}$ $0.701450453$ $[0, -1, 1, 1, 1]$ \(y^2+y=x^3-x^2+x+1\)
1003.c1 1003.c \( 17 \cdot 59 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -8, -11]$ \(y^2+xy+y=x^3-8x-11\)
1003.d1 1003.d \( 17 \cdot 59 \) $1$ $\mathsf{trivial}$ $0.545993865$ $[0, 0, 1, -41, 135]$ \(y^2+y=x^3-41x+135\)
1005.a1 1005.a \( 3 \cdot 5 \cdot 67 \) $1$ $\mathsf{trivial}$ $0.312315735$ $[0, 1, 1, -3001, -70904]$ \(y^2+y=x^3+x^2-3001x-70904\)
1005.a2 1005.a \( 3 \cdot 5 \cdot 67 \) $1$ $\Z/3\Z$ $0.936947207$ $[0, 1, 1, 239, 295]$ \(y^2+y=x^3+x^2+239x+295\)
1005.b1 1005.b \( 3 \cdot 5 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -297, -1944]$ \(y^2+xy=x^3+x^2-297x-1944\)
1005.b2 1005.b \( 3 \cdot 5 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 328, -8319]$ \(y^2+xy=x^3+x^2+328x-8319\)
1006.a1 1006.a \( 2 \cdot 503 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -32, 24]$ \(y^2+xy=x^3-x^2-32x+24\)
1006.a2 1006.a \( 2 \cdot 503 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 8, 0]$ \(y^2+xy=x^3-x^2+8x\)
1006.b1 1006.b \( 2 \cdot 503 \) $1$ $\mathsf{trivial}$ $0.284628487$ $[1, 0, 1, -2, 4]$ \(y^2+xy+y=x^3-2x+4\)
1006.c1 1006.c \( 2 \cdot 503 \) $1$ $\mathsf{trivial}$ $0.071754489$ $[1, -1, 1, -135, 639]$ \(y^2+xy+y=x^3-x^2-135x+639\)
1006.d1 1006.d \( 2 \cdot 503 \) $1$ $\mathsf{trivial}$ $0.106360665$ $[1, 1, 1, -23, 45]$ \(y^2+xy+y=x^3+x^2-23x+45\)
1006.e1 1006.e \( 2 \cdot 503 \) $1$ $\mathsf{trivial}$ $0.324915587$ $[1, 0, 0, 5, 1]$ \(y^2+xy=x^3+5x+1\)
1007.a1 1007.a \( 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $1.565031016$ $[0, 0, 1, 61, -105]$ \(y^2+y=x^3+61x-105\)
1008.a1 1008.a \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -327, -2270]$ \(y^2=x^3-327x-2270\)
1008.a2 1008.a \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -12, -65]$ \(y^2=x^3-12x-65\)
1008.b1 1008.b \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -36291, 2661010]$ \(y^2=x^3-36291x+2661010\)
1008.b2 1008.b \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3531, -9686]$ \(y^2=x^3-3531x-9686\)
1008.b3 1008.b \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -2271, 41470]$ \(y^2=x^3-2271x+41470\)
1008.b4 1008.b \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -66, 1339]$ \(y^2=x^3-66x+1339\)
1008.c1 1008.c \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.476444740$ $[0, 0, 0, -6, -5]$ \(y^2=x^3-6x-5\)
1008.c2 1008.c \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.738222370$ $[0, 0, 0, 9, -26]$ \(y^2=x^3+9x-26\)
1008.d1 1008.d \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.137828769$ $[0, 0, 0, -2691, 53730]$ \(y^2=x^3-2691x+53730\)
1008.d2 1008.d \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.284457192$ $[0, 0, 0, -531, -3726]$ \(y^2=x^3-531x-3726\)
1008.d3 1008.d \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.568914384$ $[0, 0, 0, -171, 810]$ \(y^2=x^3-171x+810\)
1008.d4 1008.d \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.137828769$ $[0, 0, 0, 9, 54]$ \(y^2=x^3+9x+54\)
1008.e1 1008.e \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.688154321$ $[0, 0, 0, -1371, 19514]$ \(y^2=x^3-1371x+19514\)
1008.e2 1008.e \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.376308643$ $[0, 0, 0, -111, 110]$ \(y^2=x^3-111x+110\)
1008.e3 1008.e \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.752617286$ $[0, 0, 0, -66, -205]$ \(y^2=x^3-66x-205\)
1008.e4 1008.e \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/4\Z$ $0.688154321$ $[0, 0, 0, 429, 866]$ \(y^2=x^3+429x+866\)
1008.f1 1008.f \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -111, -450]$ \(y^2=x^3-111x-450\)
1008.f2 1008.f \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -6, -9]$ \(y^2=x^3-6x-9\)
1008.g1 1008.g \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $5.679364664$ $[0, 0, 0, -16455, -812446]$ \(y^2=x^3-16455x-812446\)
1008.g2 1008.g \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.839682332$ $[0, 0, 0, -1020, -12913]$ \(y^2=x^3-1020x-12913\)
1008.g3 1008.g \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.893121554$ $[0, 0, 0, -255, -502]$ \(y^2=x^3-255x-502\)
1008.g4 1008.g \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.946560777$ $[0, 0, 0, 60, -61]$ \(y^2=x^3+60x-61\)
Next   Download to