Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1001.a1 |
1001c1 |
1001.a |
1001c |
$1$ |
$1$ |
\( 7 \cdot 11 \cdot 13 \) |
\( - 7^{2} \cdot 11^{3} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.036010745$ |
$1$ |
|
$32$ |
$1008$ |
$0.161095$ |
$-871531204608/11022011$ |
$[0, 0, 1, -199, 1092]$ |
\(y^2+y=x^3-199x+1092\) |
1001.b1 |
1001b3 |
1001.b |
1001b |
$4$ |
$4$ |
\( 7 \cdot 11 \cdot 13 \) |
\( 7^{4} \cdot 11 \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$1$ |
|
$0$ |
$608$ |
$0.762228$ |
$107818231938348177/4463459$ |
$[1, -1, 1, -9916, -377564]$ |
\(y^2+xy+y=x^3-x^2-9916x-377564\) |
1001.b2 |
1001b4 |
1001.b |
1001b |
$4$ |
$4$ |
\( 7 \cdot 11 \cdot 13 \) |
\( 7 \cdot 11 \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$1$ |
|
$0$ |
$608$ |
$0.762228$ |
$112489728522417/62811265517$ |
$[1, -1, 1, -1006, 2552]$ |
\(y^2+xy+y=x^3-x^2-1006x+2552\) |
1001.b3 |
1001b2 |
1001.b |
1001b |
$4$ |
$4$ |
\( 7 \cdot 11 \cdot 13 \) |
\( 7^{2} \cdot 11^{2} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$304$ |
$0.415654$ |
$26444947540257/169338169$ |
$[1, -1, 1, -621, -5764]$ |
\(y^2+xy+y=x^3-x^2-621x-5764\) |
1001.b4 |
1001b1 |
1001.b |
1001b |
$4$ |
$4$ |
\( 7 \cdot 11 \cdot 13 \) |
\( - 7 \cdot 11^{4} \cdot 13^{2} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$3$ |
$152$ |
$0.069081$ |
$-426957777/17320303$ |
$[1, -1, 1, -16, -198]$ |
\(y^2+xy+y=x^3-x^2-16x-198\) |
1001.c1 |
1001a1 |
1001.c |
1001a |
$1$ |
$1$ |
\( 7 \cdot 11 \cdot 13 \) |
\( - 7^{3} \cdot 11^{4} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1.562389412$ |
$1$ |
|
$2$ |
$1680$ |
$1.209242$ |
$-442980486619070464/1864582578859$ |
$[0, -1, 1, -15881, 778423]$ |
\(y^2+y=x^3-x^2-15881x+778423\) |
1002.a1 |
1002a2 |
1002.a |
1002a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 167 \) |
\( 2 \cdot 3^{4} \cdot 167^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.6 |
2B |
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.334669$ |
$70470585447625/4518018$ |
$[1, 1, 0, -860, -10074]$ |
\(y^2+xy=x^3+x^2-860x-10074\) |
1002.a2 |
1002a1 |
1002.a |
1002a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 167 \) |
\( - 2^{2} \cdot 3^{8} \cdot 167 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$192$ |
$-0.011904$ |
$-14260515625/4382748$ |
$[1, 1, 0, -50, -192]$ |
\(y^2+xy=x^3+x^2-50x-192\) |
1002.b1 |
1002b1 |
1002.b |
1002b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 167 \) |
\( - 2^{23} \cdot 3^{2} \cdot 167 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1104$ |
$0.627110$ |
$19785968032823/12608077824$ |
$[1, 1, 0, 564, 1872]$ |
\(y^2+xy=x^3+x^2+564x+1872\) |
1002.c1 |
1002c1 |
1002.c |
1002c |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 167 \) |
\( - 2^{3} \cdot 3^{14} \cdot 167 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.108540171$ |
$1$ |
|
$8$ |
$1008$ |
$0.777400$ |
$-3843995587427449/6390046584$ |
$[1, 0, 1, -3264, 71590]$ |
\(y^2+xy+y=x^3-3264x+71590\) |
1002.d1 |
1002d2 |
1002.d |
1002d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 167 \) |
\( 2^{3} \cdot 3 \cdot 167^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$3.021502052$ |
$1$ |
|
$2$ |
$288$ |
$-0.014852$ |
$213525509833/669336$ |
$[1, 0, 1, -125, -544]$ |
\(y^2+xy+y=x^3-125x-544\) |
1002.d2 |
1002d1 |
1002.d |
1002d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 167 \) |
\( - 2^{6} \cdot 3^{2} \cdot 167 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$1.510751026$ |
$1$ |
|
$5$ |
$144$ |
$-0.361426$ |
$-10218313/96192$ |
$[1, 0, 1, -5, -16]$ |
\(y^2+xy+y=x^3-5x-16\) |
1002.e1 |
1002e1 |
1002.e |
1002e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 167 \) |
\( - 2^{7} \cdot 3^{4} \cdot 167 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.048234294$ |
$1$ |
|
$12$ |
$224$ |
$-0.104501$ |
$-2181825073/1731456$ |
$[1, 0, 0, -27, 81]$ |
\(y^2+xy=x^3-27x+81\) |
1003.a1 |
1003c1 |
1003.a |
1003c |
$1$ |
$1$ |
\( 17 \cdot 59 \) |
\( - 17^{2} \cdot 59^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.175883$ |
$28066748319/59354531$ |
$[1, -1, 1, 63, -332]$ |
\(y^2+xy+y=x^3-x^2+63x-332\) |
1003.b1 |
1003a1 |
1003.b |
1003a |
$1$ |
$1$ |
\( 17 \cdot 59 \) |
\( - 17 \cdot 59 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.701450453$ |
$1$ |
|
$2$ |
$36$ |
$-0.744081$ |
$32768/1003$ |
$[0, -1, 1, 1, 1]$ |
\(y^2+y=x^3-x^2+x+1\) |
1003.c1 |
1003b1 |
1003.c |
1003b |
$1$ |
$1$ |
\( 17 \cdot 59 \) |
\( - 17^{2} \cdot 59 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$48$ |
$-0.477463$ |
$-47045881/17051$ |
$[1, 0, 1, -8, -11]$ |
\(y^2+xy+y=x^3-8x-11\) |
1003.d1 |
1003d1 |
1003.d |
1003d |
$1$ |
$1$ |
\( 17 \cdot 59 \) |
\( - 17 \cdot 59^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.545993865$ |
$1$ |
|
$0$ |
$180$ |
$-0.038056$ |
$-7622111232/3491443$ |
$[0, 0, 1, -41, 135]$ |
\(y^2+y=x^3-41x+135\) |
1005.a1 |
1005b2 |
1005.a |
1005b |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 67 \) |
\( - 3^{4} \cdot 5^{6} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$0.312315735$ |
$1$ |
|
$4$ |
$1440$ |
$0.955898$ |
$-2989967081734144/380653171875$ |
$[0, 1, 1, -3001, -70904]$ |
\(y^2+y=x^3+x^2-3001x-70904\) |
1005.a2 |
1005b1 |
1005.a |
1005b |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 67 \) |
\( - 3^{12} \cdot 5^{2} \cdot 67 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$0.936947207$ |
$1$ |
|
$8$ |
$480$ |
$0.406592$ |
$1503484706816/890163675$ |
$[0, 1, 1, 239, 295]$ |
\(y^2+y=x^3+x^2+239x+295\) |
1005.b1 |
1005a1 |
1005.b |
1005a |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 67 \) |
\( 3^{5} \cdot 5^{6} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$360$ |
$0.353420$ |
$2912566550041/254390625$ |
$[1, 1, 0, -297, -1944]$ |
\(y^2+xy=x^3+x^2-297x-1944\) |
1005.b2 |
1005a2 |
1005.b |
1005a |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 67 \) |
\( - 3^{10} \cdot 5^{3} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$0$ |
$720$ |
$0.699994$ |
$3883959939959/33133870125$ |
$[1, 1, 0, 328, -8319]$ |
\(y^2+xy=x^3+x^2+328x-8319\) |
1006.a1 |
1006b2 |
1006.a |
1006b |
$2$ |
$2$ |
\( 2 \cdot 503 \) |
\( 2^{3} \cdot 503^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.6 |
2B |
$1$ |
$1$ |
|
$0$ |
$126$ |
$-0.099277$ |
$3687953625/2024072$ |
$[1, -1, 0, -32, 24]$ |
\(y^2+xy=x^3-x^2-32x+24\) |
1006.a2 |
1006b1 |
1006.a |
1006b |
$2$ |
$2$ |
\( 2 \cdot 503 \) |
\( - 2^{6} \cdot 503 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$63$ |
$-0.445851$ |
$52734375/32192$ |
$[1, -1, 0, 8, 0]$ |
\(y^2+xy=x^3-x^2+8x\) |
1006.b1 |
1006a1 |
1006.b |
1006a |
$1$ |
$1$ |
\( 2 \cdot 503 \) |
\( - 2^{4} \cdot 503 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.284628487$ |
$1$ |
|
$6$ |
$48$ |
$-0.569676$ |
$-389017/8048$ |
$[1, 0, 1, -2, 4]$ |
\(y^2+xy+y=x^3-2x+4\) |
1006.c1 |
1006e1 |
1006.c |
1006e |
$1$ |
$1$ |
\( 2 \cdot 503 \) |
\( - 2^{12} \cdot 503 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.071754489$ |
$1$ |
|
$12$ |
$480$ |
$0.041440$ |
$-270212594625/2060288$ |
$[1, -1, 1, -135, 639]$ |
\(y^2+xy+y=x^3-x^2-135x+639\) |
1006.d1 |
1006d1 |
1006.d |
1006d |
$1$ |
$1$ |
\( 2 \cdot 503 \) |
\( - 2^{10} \cdot 503 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.106360665$ |
$1$ |
|
$8$ |
$120$ |
$-0.194395$ |
$-1349232625/515072$ |
$[1, 1, 1, -23, 45]$ |
\(y^2+xy+y=x^3+x^2-23x+45\) |
1006.e1 |
1006c1 |
1006.e |
1006c |
$1$ |
$1$ |
\( 2 \cdot 503 \) |
\( - 2^{4} \cdot 503 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.324915587$ |
$1$ |
|
$4$ |
$96$ |
$-0.561197$ |
$13651919/8048$ |
$[1, 0, 0, 5, 1]$ |
\(y^2+xy=x^3+5x+1\) |
1007.a1 |
1007a1 |
1007.a |
1007a |
$1$ |
$1$ |
\( 19 \cdot 53 \) |
\( - 19^{3} \cdot 53^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1.565031016$ |
$1$ |
|
$0$ |
$276$ |
$0.085908$ |
$25102282752/19266931$ |
$[0, 0, 1, 61, -105]$ |
\(y^2+y=x^3+61x-105\) |
1008.a1 |
1008m2 |
1008.a |
1008m |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{8} \cdot 3^{8} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$384$ |
$0.225320$ |
$20720464/63$ |
$[0, 0, 0, -327, -2270]$ |
\(y^2=x^3-327x-2270\) |
1008.a2 |
1008m1 |
1008.a |
1008m |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{7} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$192$ |
$-0.121254$ |
$-16384/147$ |
$[0, 0, 0, -12, -65]$ |
\(y^2=x^3-12x-65\) |
1008.b1 |
1008e4 |
1008.b |
1008e |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{10} \cdot 3^{9} \cdot 7 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$3$ |
$1536$ |
$1.077496$ |
$7080974546692/189$ |
$[0, 0, 0, -36291, 2661010]$ |
\(y^2=x^3-36291x+2661010\) |
1008.b2 |
1008e3 |
1008.b |
1008e |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{10} \cdot 3^{18} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$1.077496$ |
$6522128932/3720087$ |
$[0, 0, 0, -3531, -9686]$ |
\(y^2=x^3-3531x-9686\) |
1008.b3 |
1008e2 |
1008.b |
1008e |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{8} \cdot 3^{12} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$768$ |
$0.730922$ |
$6940769488/35721$ |
$[0, 0, 0, -2271, 41470]$ |
\(y^2=x^3-2271x+41470\) |
1008.b4 |
1008e1 |
1008.b |
1008e |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{9} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$1$ |
|
$1$ |
$384$ |
$0.384348$ |
$-2725888/64827$ |
$[0, 0, 0, -66, 1339]$ |
\(y^2=x^3-66x+1339\) |
1008.c1 |
1008b1 |
1008.c |
1008b |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{4} \cdot 3^{3} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.476444740$ |
$1$ |
|
$3$ |
$64$ |
$-0.602921$ |
$55296/7$ |
$[0, 0, 0, -6, -5]$ |
\(y^2=x^3-6x-5\) |
1008.c2 |
1008b2 |
1008.c |
1008b |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( - 2^{8} \cdot 3^{3} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.738222370$ |
$1$ |
|
$7$ |
$128$ |
$-0.256348$ |
$11664/49$ |
$[0, 0, 0, 9, -26]$ |
\(y^2=x^3+9x-26\) |
1008.d1 |
1008h4 |
1008.d |
1008h |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{11} \cdot 3^{6} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$1.137828769$ |
$1$ |
|
$5$ |
$512$ |
$0.547274$ |
$1443468546/7$ |
$[0, 0, 0, -2691, 53730]$ |
\(y^2=x^3-2691x+53730\) |
1008.d2 |
1008h3 |
1008.d |
1008h |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{11} \cdot 3^{6} \cdot 7^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$0.284457192$ |
$1$ |
|
$13$ |
$512$ |
$0.547274$ |
$11090466/2401$ |
$[0, 0, 0, -531, -3726]$ |
\(y^2=x^3-531x-3726\) |
1008.d3 |
1008h2 |
1008.d |
1008h |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{10} \cdot 3^{6} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$0.568914384$ |
$1$ |
|
$15$ |
$256$ |
$0.200700$ |
$740772/49$ |
$[0, 0, 0, -171, 810]$ |
\(y^2=x^3-171x+810\) |
1008.d4 |
1008h1 |
1008.d |
1008h |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$1.137828769$ |
$1$ |
|
$5$ |
$128$ |
$-0.145874$ |
$432/7$ |
$[0, 0, 0, 9, 54]$ |
\(y^2=x^3+9x+54\) |
1008.e1 |
1008g3 |
1008.e |
1008g |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{10} \cdot 3^{10} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$0.688154321$ |
$1$ |
|
$7$ |
$512$ |
$0.556265$ |
$381775972/567$ |
$[0, 0, 0, -1371, 19514]$ |
\(y^2=x^3-1371x+19514\) |
1008.e2 |
1008g2 |
1008.e |
1008g |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{8} \cdot 3^{8} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1.376308643$ |
$1$ |
|
$9$ |
$256$ |
$0.209692$ |
$810448/441$ |
$[0, 0, 0, -111, 110]$ |
\(y^2=x^3-111x+110\) |
1008.e3 |
1008g1 |
1008.e |
1008g |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{4} \cdot 3^{7} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2.752617286$ |
$1$ |
|
$3$ |
$128$ |
$-0.136882$ |
$2725888/21$ |
$[0, 0, 0, -66, -205]$ |
\(y^2=x^3-66x-205\) |
1008.e4 |
1008g4 |
1008.e |
1008g |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( - 2^{10} \cdot 3^{7} \cdot 7^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$0.688154321$ |
$1$ |
|
$15$ |
$512$ |
$0.556265$ |
$11696828/7203$ |
$[0, 0, 0, 429, 866]$ |
\(y^2=x^3+429x+866\) |
1008.f1 |
1008d2 |
1008.f |
1008d |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{8} \cdot 3^{3} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$128$ |
$-0.126299$ |
$21882096/7$ |
$[0, 0, 0, -111, -450]$ |
\(y^2=x^3-111x-450\) |
1008.f2 |
1008d1 |
1008.f |
1008d |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{3} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$64$ |
$-0.472872$ |
$-55296/49$ |
$[0, 0, 0, -6, -9]$ |
\(y^2=x^3-6x-9\) |
1008.g1 |
1008j4 |
1008.g |
1008j |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{8} \cdot 3^{8} \cdot 7^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$5.679364664$ |
$1$ |
|
$1$ |
$1152$ |
$0.964115$ |
$2640279346000/3087$ |
$[0, 0, 0, -16455, -812446]$ |
\(y^2=x^3-16455x-812446\) |
1008.g2 |
1008j3 |
1008.g |
1008j |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{7} \cdot 7^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$2.839682332$ |
$1$ |
|
$3$ |
$576$ |
$0.617541$ |
$-10061824000/352947$ |
$[0, 0, 0, -1020, -12913]$ |
\(y^2=x^3-1020x-12913\) |
1008.g3 |
1008j2 |
1008.g |
1008j |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{8} \cdot 3^{12} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1.893121554$ |
$1$ |
|
$3$ |
$384$ |
$0.414809$ |
$9826000/5103$ |
$[0, 0, 0, -255, -502]$ |
\(y^2=x^3-255x-502\) |
1008.g4 |
1008j1 |
1008.g |
1008j |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{9} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$0.946560777$ |
$1$ |
|
$5$ |
$192$ |
$0.068235$ |
$2048000/1323$ |
$[0, 0, 0, 60, -61]$ |
\(y^2=x^3+60x-61\) |