Minimal Weierstrass equation
\( y^2 + x y + y = x^{3} - x^{2} - 16 x - 198 \)
Mordell-Weil group structure
Torsion generators
\( \left(18, 62\right) \)
Integral points
\( \left(7, -4\right) \), \( \left(18, 62\right) \)
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
Conductor: | \( 1001 \) | = | \(7 \cdot 11 \cdot 13\) | ||
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
Discriminant: | \(-17320303 \) | = | \(-1 \cdot 7 \cdot 11^{4} \cdot 13^{2} \) | ||
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
j-invariant: | \( -\frac{426957777}{17320303} \) | = | \(-1 \cdot 3^{3} \cdot 7^{-1} \cdot 11^{-4} \cdot 13^{-2} \cdot 251^{3}\) | ||
Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
Sato-Tate Group: | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
Rank: | \(0\) | ||
magma: Regulator(E);
sage: E.regulator()
|
|||
Regulator: | \(1\) | ||
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
Real period: | \(0.956860977456\) | ||
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
Tamagawa product: | \( 8 \) = \( 1\cdot2^{2}\cdot2 \) | ||
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
Torsion order: | \(4\) | ||
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 1001.2.a.b
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
Modular degree: | 152 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 0.478430488728 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(7\) | \(1\) | \( I_{1} \) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(11\) | \(4\) | \( I_{4} \) | Split multiplicative | -1 | 1 | 4 | 4 |
\(13\) | \(2\) | \( I_{2} \) | Non-split multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13h.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right)$ and has index 12.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 7 | 11 | 13 |
---|---|---|---|---|
Reduction type | ordinary | nonsplit | split | nonsplit |
$\lambda$-invariant(s) | 2 | 0 | 3 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class 1001b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
2 | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
4 | 4.2.2290288.2 | \(\Z/8\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.