Properties

Label 20.6.0.b.1
Level $20$
Index $6$
Genus $0$
Analytic rank $0$
Cusps $3$
$\Q$-cusps $1$

Related objects

Downloads

Learn more

Invariants

Level: $20$ $\SL_2$-level: $4$
Index: $6$ $\PSL_2$-index:$6$
Genus: $0 = 1 + \frac{ 6 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 3 }{2}$
Cusps: $3$ (of which $1$ is rational) Cusp widths $1^{2}\cdot4$ Cusp orbits $1\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $1$
Rational CM points: yes $\quad(D =$ $-4$)

Other labels

Cummins and Pauli (CP) label: 4B0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 20.6.0.4

Level structure

$\GL_2(\Z/20\Z)$-generators: $\begin{bmatrix}9&2\\6&7\end{bmatrix}$, $\begin{bmatrix}11&8\\17&7\end{bmatrix}$, $\begin{bmatrix}17&18\\17&7\end{bmatrix}$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 20-isogeny field degree: $12$
Cyclic 20-torsion field degree: $96$
Full 20-torsion field degree: $7680$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 4163 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 6 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{1}{2^8}\cdot\frac{x^{6}(5x^{2}+768y^{2})^{3}}{y^{4}x^{6}(5x^{2}+1024y^{2})}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_0(2)$ $2$ $2$ $2$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
20.12.0.a.1 $20$ $2$ $2$ $0$
20.12.0.c.1 $20$ $2$ $2$ $0$
20.12.0.j.1 $20$ $2$ $2$ $0$
20.12.0.k.1 $20$ $2$ $2$ $0$
20.30.2.f.1 $20$ $5$ $5$ $2$
20.36.1.e.1 $20$ $6$ $6$ $1$
20.60.3.n.1 $20$ $10$ $10$ $3$
40.12.0.c.1 $40$ $2$ $2$ $0$
40.12.0.h.1 $40$ $2$ $2$ $0$
40.12.0.bg.1 $40$ $2$ $2$ $0$
40.12.0.bj.1 $40$ $2$ $2$ $0$
60.12.0.i.1 $60$ $2$ $2$ $0$
60.12.0.k.1 $60$ $2$ $2$ $0$
60.12.0.bd.1 $60$ $2$ $2$ $0$
60.12.0.bf.1 $60$ $2$ $2$ $0$
60.18.1.b.1 $60$ $3$ $3$ $1$
60.24.0.p.1 $60$ $4$ $4$ $0$
120.12.0.bd.1 $120$ $2$ $2$ $0$
120.12.0.bj.1 $120$ $2$ $2$ $0$
120.12.0.dm.1 $120$ $2$ $2$ $0$
120.12.0.ds.1 $120$ $2$ $2$ $0$
140.12.0.m.1 $140$ $2$ $2$ $0$
140.12.0.n.1 $140$ $2$ $2$ $0$
140.12.0.u.1 $140$ $2$ $2$ $0$
140.12.0.v.1 $140$ $2$ $2$ $0$
140.48.2.d.1 $140$ $8$ $8$ $2$
140.126.7.b.1 $140$ $21$ $21$ $7$
140.168.9.k.1 $140$ $28$ $28$ $9$
180.162.10.b.1 $180$ $27$ $27$ $10$
220.12.0.m.1 $220$ $2$ $2$ $0$
220.12.0.n.1 $220$ $2$ $2$ $0$
220.12.0.u.1 $220$ $2$ $2$ $0$
220.12.0.v.1 $220$ $2$ $2$ $0$
220.72.4.b.1 $220$ $12$ $12$ $4$
220.330.21.b.1 $220$ $55$ $55$ $21$
220.330.21.e.1 $220$ $55$ $55$ $21$
260.12.0.m.1 $260$ $2$ $2$ $0$
260.12.0.n.1 $260$ $2$ $2$ $0$
260.12.0.u.1 $260$ $2$ $2$ $0$
260.12.0.v.1 $260$ $2$ $2$ $0$
260.84.5.b.1 $260$ $14$ $14$ $5$
280.12.0.bo.1 $280$ $2$ $2$ $0$
280.12.0.br.1 $280$ $2$ $2$ $0$
280.12.0.cm.1 $280$ $2$ $2$ $0$
280.12.0.cp.1 $280$ $2$ $2$ $0$