Properties

Label 97104.s
Number of curves $1$
Conductor $97104$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 97104.s1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 97104.s do not have complex multiplication.

Modular form 97104.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} + q^{9} + 5 q^{11} - q^{13} + q^{15} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 97104.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
97104.s1 97104bx1 \([0, -1, 0, -67498936, 214012584304]\) \(-344002044213921241/1011143540736\) \(-99969216444086316171264\) \([]\) \(14100480\) \(3.2836\) \(\Gamma_0(N)\)-optimal