Learn more about

Refine search


Results (1-50 of 144 matches)

Next   Download to        
Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass coefficients Rank Torsion structure
97104.a1 97104br2 97104.a 97104br $[0, -1, 0, -10500, 416556]$ $0$ $[2]$
97104.a2 97104br1 97104.a 97104br $[0, -1, 0, -385, 11956]$ $0$ $[2]$
97104.b1 97104bt1 97104.b 97104bt $[0, -1, 0, -145752, -25125264]$ $1$ trivial
97104.b2 97104bt2 97104.b 97104bt $[0, -1, 0, 1033368, 152214384]$ $1$ trivial
97104.c1 97104bq1 97104.c 97104bq $[0, -1, 0, -10191392, 12836146944]$ $0$ trivial
97104.d1 97104ce1 97104.d 97104ce $[0, -1, 0, 4528, 385344]$ $1$ trivial
97104.e1 97104cf1 97104.e 97104cf $[0, -1, 0, 29008, -822336]$ $1$ trivial
97104.f1 97104bm2 97104.f 97104bm $[0, -1, 0, -255126984, -1568382680592]$ $0$ $[2]$
97104.f2 97104bm1 97104.f 97104bm $[0, -1, 0, -15418824, -26196262416]$ $0$ $[2]$
97104.g1 97104bk4 97104.g 97104bk $[0, -1, 0, -609784, 165115888]$ $0$ $[2]$
97104.g2 97104bk2 97104.g 97104bk $[0, -1, 0, -139224, -19948560]$ $0$ $[2]$
97104.g3 97104bk1 97104.g 97104bk $[0, -1, 0, -8664, -312336]$ $0$ $[2]$
97104.g4 97104bk3 97104.g 97104bk $[0, -1, 0, 51176, 12830704]$ $0$ $[2]$
97104.h1 97104bl1 97104.h 97104bl $[0, -1, 0, -97489, 11737264]$ $0$ $[2]$
97104.h2 97104bl2 97104.h 97104bl $[0, -1, 0, -72924, 17770428]$ $0$ $[2]$
97104.i1 97104cc2 97104.i 97104cc $[0, -1, 0, -15464, 699504]$ $1$ $[2]$
97104.i2 97104cc1 97104.i 97104cc $[0, -1, 0, 856, 46704]$ $1$ $[2]$
97104.j1 97104h4 97104.j 97104h $[0, -1, 0, -633584, 194288160]$ $0$ $[4]$
97104.j2 97104h3 97104.j 97104h $[0, -1, 0, -286784, -57294432]$ $0$ $[2]$
97104.j3 97104h2 97104.j 97104h $[0, -1, 0, -44024, 2327424]$ $0$ $[2, 2]$
97104.j4 97104h1 97104.j 97104h $[0, -1, 0, 7996, 246624]$ $0$ $[2]$
97104.k1 97104g4 97104.k 97104g $[0, -1, 0, -1165344, -483816816]$ $0$ $[2]$
97104.k2 97104g3 97104.k 97104g $[0, -1, 0, -113384, 1800288]$ $0$ $[2]$
97104.k3 97104g2 97104.k 97104g $[0, -1, 0, -72924, -7521696]$ $0$ $[2, 2]$
97104.k4 97104g1 97104.k 97104g $[0, -1, 0, -2119, -242942]$ $0$ $[2]$
97104.l1 97104bh1 97104.l 97104bh $[0, -1, 0, -1456, 21952]$ $2$ trivial
97104.m1 97104bg1 97104.m 97104bg $[0, -1, 0, -173496, 28809072]$ $2$ trivial
97104.n1 97104bf1 97104.n 97104bf $[0, -1, 0, 16483019, -23305694531]$ $0$ trivial
97104.o1 97104bz1 97104.o 97104bz $[0, -1, 0, -24661, 5507869]$ $1$ trivial
97104.p1 97104by1 97104.p 97104by $[0, -1, 0, -96, -16128]$ $1$ trivial
97104.q1 97104bw1 97104.q 97104bw $[0, -1, 0, 10019, -418943]$ $1$ trivial
97104.r1 97104e1 97104.r 97104e $[0, -1, 0, -2346776, -1382999856]$ $0$ trivial
97104.s1 97104bx1 97104.s 97104bx $[0, -1, 0, -67498936, 214012584304]$ $1$ trivial
97104.t1 97104a1 97104.t 97104a $[0, -1, 0, -8188, 2697055]$ $0$ trivial
97104.u1 97104be1 97104.u 97104be $[0, -1, 0, -9378, 352755]$ $0$ trivial
97104.v1 97104bu1 97104.v 97104bu $[0, -1, 0, -32753, -2250336]$ $1$ $[2]$
97104.v2 97104bu2 97104.v 97104bu $[0, -1, 0, -8188, -5571524]$ $1$ $[2]$
97104.w1 97104k1 97104.w 97104k $[0, -1, 0, -48648, 4148991]$ $1$ trivial
97104.x1 97104bv1 97104.x 97104bv $[0, -1, 0, 139202, -174583637]$ $1$ trivial
97104.y1 97104j1 97104.y 97104j $[0, -1, 0, -8188, -309701]$ $1$ trivial
97104.z1 97104b1 97104.z 97104b $[0, -1, 0, -17911160, -32559875952]$ $0$ trivial
97104.ba1 97104d1 97104.ba 97104d $[0, -1, 0, -27490065, -55467695331]$ $0$ trivial
97104.bb1 97104bj4 97104.bb 97104bj $[0, -1, 0, -6214752, -5961189888]$ $0$ $[2]$
97104.bb2 97104bj6 97104.bb 97104bj $[0, -1, 0, -4226432, 3313629312]$ $0$ $[2]$
97104.bb3 97104bj3 97104.bb 97104bj $[0, -1, 0, -480992, -45281280]$ $0$ $[2, 2]$
97104.bb4 97104bj2 97104.bb 97104bj $[0, -1, 0, -388512, -93000960]$ $0$ $[2, 2]$
97104.bb5 97104bj1 97104.bb 97104bj $[0, -1, 0, -18592, -2148608]$ $0$ $[2]$
97104.bb6 97104bj5 97104.bb 97104bj $[0, -1, 0, 1784768, -351612032]$ $0$ $[2]$
97104.bc1 97104bi4 97104.bc 97104bi $[0, -1, 0, -23485392, -43799289408]$ $2$ $[2]$
97104.bc2 97104bi3 97104.bc 97104bi $[0, -1, 0, -3139792, 1132969408]$ $2$ $[2]$
Next   Download to