Properties

Label 97104.k
Number of curves $4$
Conductor $97104$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 97104.k have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 97104.k do not have complex multiplication.

Modular form 97104.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{7} + q^{9} + 6 q^{13} + 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 97104.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
97104.k1 97104g4 \([0, -1, 0, -1165344, -483816816]\) \(7080974546692/189\) \(4671488553984\) \([2]\) \(983040\) \(1.9448\)  
97104.k2 97104g3 \([0, -1, 0, -113384, 1800288]\) \(6522128932/3720087\) \(91948909208067072\) \([2]\) \(983040\) \(1.9448\)  
97104.k3 97104g2 \([0, -1, 0, -72924, -7521696]\) \(6940769488/35721\) \(220727834175744\) \([2, 2]\) \(491520\) \(1.5982\)  
97104.k4 97104g1 \([0, -1, 0, -2119, -242942]\) \(-2725888/64827\) \(-25036258969008\) \([2]\) \(245760\) \(1.2516\) \(\Gamma_0(N)\)-optimal