Properties

Label 9680i
Number of curves $1$
Conductor $9680$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9680i1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9680i do not have complex multiplication.

Modular form 9680.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + q^{5} + q^{7} + 6 q^{9} + 6 q^{13} - 3 q^{15} - 3 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9680i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9680.a1 9680i1 \([0, 0, 0, -8107, -300806]\) \(-16241202/1375\) \(-4988715776000\) \([]\) \(34560\) \(1.1815\) \(\Gamma_0(N)\)-optimal