Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 966e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
966.e2 | 966e1 | \([1, 0, 1, -1, 116]\) | \(-15625/5842368\) | \(-5842368\) | \([2]\) | \(192\) | \(-0.022728\) | \(\Gamma_0(N)\)-optimal |
966.e1 | 966e2 | \([1, 0, 1, -361, 2564]\) | \(5182207647625/91449288\) | \(91449288\) | \([2]\) | \(384\) | \(0.32385\) |
Rank
sage: E.rank()
The elliptic curves in class 966e have rank \(1\).
Complex multiplication
The elliptic curves in class 966e do not have complex multiplication.Modular form 966.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.