Learn more

Refine search


Results (27 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
966.a1 966.a \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $0.197258770$ $[1, 1, 0, -72, -90]$ \(y^2+xy=x^3+x^2-72x-90\)
966.a2 966.a \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $0.394517540$ $[1, 1, 0, 18, 0]$ \(y^2+xy=x^3+x^2+18x\)
966.b1 966.b \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $1.650614271$ $[1, 1, 0, -3346, 63700]$ \(y^2+xy=x^3+x^2-3346x+63700\)
966.b2 966.b \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $0.825307135$ $[1, 1, 0, 334, 5556]$ \(y^2+xy=x^3+x^2+334x+5556\)
966.c1 966.c \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $3.116373404$ $[1, 1, 0, -250264, 48082240]$ \(y^2+xy=x^3+x^2-250264x+48082240\)
966.c2 966.c \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $1.558186702$ $[1, 1, 0, -14744, 836928]$ \(y^2+xy=x^3+x^2-14744x+836928\)
966.d1 966.d \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5131, -144323]$ \(y^2+xy=x^3+x^2-5131x-144323\)
966.e1 966.e \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $0.541574832$ $[1, 0, 1, -361, 2564]$ \(y^2+xy+y=x^3-361x+2564\)
966.e2 966.e \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $0.270787416$ $[1, 0, 1, -1, 116]$ \(y^2+xy+y=x^3-x+116\)
966.f1 966.f \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1516491, -715440266]$ \(y^2+xy+y=x^3-1516491x-715440266\)
966.f2 966.f \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -111996, 13735450]$ \(y^2+xy+y=x^3-111996x+13735450\)
966.f3 966.f \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -41931, -23576714]$ \(y^2+xy+y=x^3-41931x-23576714\)
966.f4 966.f \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, 4644, 858394]$ \(y^2+xy+y=x^3+4644x+858394\)
966.g1 966.g \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $4.858093228$ $[1, 1, 1, -79134, -8601153]$ \(y^2+xy+y=x^3+x^2-79134x-8601153\)
966.g2 966.g \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/8\Z$ $2.429046614$ $[1, 1, 1, -17714, 900047]$ \(y^2+xy+y=x^3+x^2-17714x+900047\)
966.g3 966.g \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.429046614$ $[1, 1, 1, -5074, -128689]$ \(y^2+xy+y=x^3+x^2-5074x-128689\)
966.g4 966.g \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.214523307$ $[1, 1, 1, -1154, 12431]$ \(y^2+xy+y=x^3+x^2-1154x+12431\)
966.g5 966.g \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/4\Z$ $0.607261653$ $[1, 1, 1, 126, 1167]$ \(y^2+xy+y=x^3+x^2+126x+1167\)
966.g6 966.g \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $4.858093228$ $[1, 1, 1, 6266, -609505]$ \(y^2+xy+y=x^3+x^2+6266x-609505\)
966.h1 966.h \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -615, -6147]$ \(y^2+xy+y=x^3+x^2-615x-6147\)
966.i1 966.i \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -27, -249]$ \(y^2+xy=x^3-27x-249\)
966.i2 966.i \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 3, 9]$ \(y^2+xy=x^3+3x+9\)
966.j1 966.j \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -178849, -29127301]$ \(y^2+xy=x^3-178849x-29127301\)
966.j2 966.j \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -12789, -316305]$ \(y^2+xy=x^3-12789x-316305\)
966.j3 966.j \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -11179, -455731]$ \(y^2+xy=x^3-11179x-455731\)
966.j4 966.j \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, -599, -9255]$ \(y^2+xy=x^3-599x-9255\)
966.k1 966.k \( 2 \cdot 3 \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 9096, 224832]$ \(y^2+xy=x^3+9096x+224832\)
  Download to