Properties

Label 9438.h
Number of curves $2$
Conductor $9438$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 9438.h have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9438.h do not have complex multiplication.

Modular form 9438.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 4 q^{5} + q^{6} - 4 q^{7} - q^{8} + q^{9} - 4 q^{10} - q^{12} + q^{13} + 4 q^{14} - 4 q^{15} + q^{16} + 2 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 9438.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9438.h1 9438c2 \([1, 1, 0, -30153, -2027835]\) \(2278031600817539/131609088\) \(175171696128\) \([2]\) \(48384\) \(1.2207\)  
9438.h2 9438c1 \([1, 1, 0, -1993, -28475]\) \(658275956099/132907008\) \(176899227648\) \([2]\) \(24192\) \(0.87409\) \(\Gamma_0(N)\)-optimal