Properties

Label 94320.be
Number of curves $1$
Conductor $94320$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 94320.be1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(131\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 94320.be do not have complex multiplication.

Modular form 94320.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} + 2 q^{11} - 4 q^{13} - 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 94320.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
94320.be1 94320bl1 \([0, 0, 0, 213, -134566]\) \(357911/2620000\) \(-7823278080000\) \([]\) \(138240\) \(1.1529\) \(\Gamma_0(N)\)-optimal