Properties

Label 9386.k
Number of curves $4$
Conductor $9386$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 9386.k have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(13\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9386.k do not have complex multiplication.

Modular form 9386.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{5} + 4 q^{7} + q^{8} - 3 q^{9} + 2 q^{10} + 4 q^{11} + q^{13} + 4 q^{14} + q^{16} + 2 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 9386.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9386.k1 9386h3 \([1, -1, 1, -74434, -7790149]\) \(969417177273/1085318\) \(51059741475158\) \([2]\) \(48960\) \(1.5444\)  
9386.k2 9386h4 \([1, -1, 1, -52774, 4639803]\) \(345505073913/3388346\) \(159407722702826\) \([2]\) \(48960\) \(1.5444\)  
9386.k3 9386h2 \([1, -1, 1, -5844, -53197]\) \(469097433/244036\) \(11480888615716\) \([2, 2]\) \(24480\) \(1.1979\)  
9386.k4 9386h1 \([1, -1, 1, 1376, -6989]\) \(6128487/3952\) \(-185925321712\) \([4]\) \(12240\) \(0.85130\) \(\Gamma_0(N)\)-optimal