Properties

Label 91200.j
Number of curves $4$
Conductor $91200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 91200.j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 91200.j do not have complex multiplication.

Modular form 91200.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{7} + q^{9} - 6 q^{13} - 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 91200.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
91200.j1 91200m4 \([0, -1, 0, -787968033, 8513818955937]\) \(13209596798923694545921/92340\) \(378224640000000\) \([2]\) \(17694720\) \(3.3319\)  
91200.j2 91200m3 \([0, -1, 0, -49856033, 129587723937]\) \(3345930611358906241/165622259047500\) \(678388773058560000000000\) \([2]\) \(17694720\) \(3.3319\)  
91200.j3 91200m2 \([0, -1, 0, -49248033, 133040555937]\) \(3225005357698077121/8526675600\) \(34925263257600000000\) \([2, 2]\) \(8847360\) \(2.9854\)  
91200.j4 91200m1 \([0, -1, 0, -3040033, 2133291937]\) \(-758575480593601/40535043840\) \(-166031539568640000000\) \([2]\) \(4423680\) \(2.6388\) \(\Gamma_0(N)\)-optimal