Properties

Label 9075c
Number of curves $1$
Conductor $9075$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9075c1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9075c do not have complex multiplication.

Modular form 9075.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} + q^{6} + q^{7} + 3 q^{8} + q^{9} + q^{12} - 2 q^{13} - q^{14} - q^{16} + 3 q^{17} - q^{18} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9075c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9075.e1 9075c1 \([1, 1, 1, -17608, -1059574]\) \(-10241915/2187\) \(-128920790005425\) \([]\) \(22176\) \(1.4288\) \(\Gamma_0(N)\)-optimal