Learn more

Refine search


Results (42 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
9075.a1 9075.a \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.749044090$ $[0, -1, 1, -1008, 12968]$ \(y^2+y=x^3-x^2-1008x+12968\)
9075.a2 9075.a \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.745220451$ $[0, -1, 1, 5042, -610182]$ \(y^2+y=x^3-x^2+5042x-610182\)
9075.b1 9075.b \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.383850413$ $[0, 1, 1, 92, 94]$ \(y^2+y=x^3+x^2+92x+94\)
9075.c1 9075.c \( 3 \cdot 5^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.700470228$ $[1, 1, 1, -283, 1706]$ \(y^2+xy+y=x^3+x^2-283x+1706\)
9075.c2 9075.c \( 3 \cdot 5^{2} \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.700470228$ $[1, 1, 1, -8, 56]$ \(y^2+xy+y=x^3+x^2-8x+56\)
9075.d1 9075.d \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.792775447$ $[1, 1, 1, -338, -1594]$ \(y^2+xy+y=x^3+x^2-338x-1594\)
9075.d2 9075.d \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.896387723$ $[1, 1, 1, 1037, -9844]$ \(y^2+xy+y=x^3+x^2+1037x-9844\)
9075.e1 9075.e \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $5.614966616$ $[1, 1, 1, -17608, -1059574]$ \(y^2+xy+y=x^3+x^2-17608x-1059574\)
9075.f1 9075.f \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $4.335302366$ $[1, 0, 0, -856138, -303556483]$ \(y^2+xy=x^3-856138x-303556483\)
9075.f2 9075.f \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $8.670604733$ $[1, 0, 0, -24263, -9904608]$ \(y^2+xy=x^3-24263x-9904608\)
9075.g1 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.471890948$ $[1, 0, 0, -6534063, 6428154492]$ \(y^2+xy=x^3-6534063x+6428154492\)
9075.g2 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.943781896$ $[1, 0, 0, -408438, 100383867]$ \(y^2+xy=x^3-408438x+100383867\)
9075.g3 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.471890948$ $[1, 0, 0, -332813, 138725742]$ \(y^2+xy=x^3-332813x+138725742\)
9075.g4 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $7.550255175$ $[1, 0, 0, -242063, -45859758]$ \(y^2+xy=x^3-242063x-45859758\)
9075.g5 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.887563793$ $[1, 0, 0, -30313, 936992]$ \(y^2+xy=x^3-30313x+936992\)
9075.g6 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.775127587$ $[1, 0, 0, -15188, -711633]$ \(y^2+xy=x^3-15188x-711633\)
9075.g7 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $7.550255175$ $[1, 0, 0, -63, -31008]$ \(y^2+xy=x^3-63x-31008\)
9075.g8 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.775127587$ $[1, 0, 0, 105812, 7062617]$ \(y^2+xy=x^3+105812x+7062617\)
9075.h1 9075.h \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.099543785$ $[1, 0, 0, -3638, 98517]$ \(y^2+xy=x^3-3638x+98517\)
9075.i1 9075.i \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -2823, -59632]$ \(y^2+y=x^3-x^2-2823x-59632\)
9075.i2 9075.i \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 15327, -112267]$ \(y^2+y=x^3-x^2+15327x-112267\)
9075.j1 9075.j \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -149783, 22362218]$ \(y^2+y=x^3-x^2-149783x+22362218\)
9075.j2 9075.j \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -1283, 50093]$ \(y^2+y=x^3-x^2-1283x+50093\)
9075.k1 9075.k \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -18123783, -29691617407]$ \(y^2+y=x^3-x^2-18123783x-29691617407\)
9075.k2 9075.k \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -155283, -66053032]$ \(y^2+y=x^3-x^2-155283x-66053032\)
9075.l1 9075.l \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -70583, -7595131]$ \(y^2+y=x^3+x^2-70583x-7595131\)
9075.l2 9075.l \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 383167, -13267006]$ \(y^2+y=x^3+x^2+383167x-13267006\)
9075.m1 9075.m \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.097275017$ $[1, 1, 0, -145, 730]$ \(y^2+xy=x^3+x^2-145x+730\)
9075.n1 9075.n \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $10.73978656$ $[1, 1, 0, -40900, 1916875]$ \(y^2+xy=x^3+x^2-40900x+1916875\)
9075.n2 9075.n \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.369893282$ $[1, 1, 0, 125475, 13729500]$ \(y^2+xy=x^3+x^2+125475x+13729500\)
9075.o1 9075.o \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -34245, -2442150]$ \(y^2+xy=x^3+x^2-34245x-2442150\)
9075.o2 9075.o \( 3 \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -970, -79625]$ \(y^2+xy=x^3+x^2-970x-79625\)
9075.p1 9075.p \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.555959923$ $[1, 0, 1, -440201, -131566327]$ \(y^2+xy+y=x^3-440201x-131566327\)
9075.q1 9075.q \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $6.147048426$ $[1, 0, 1, -443226, -113501027]$ \(y^2+xy+y=x^3-443226x-113501027\)
9075.q2 9075.q \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.073524213$ $[1, 0, 1, -34851, -789527]$ \(y^2+xy+y=x^3-34851x-789527\)
9075.q3 9075.q \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.536762106$ $[1, 0, 1, -19726, 1055723]$ \(y^2+xy+y=x^3-19726x+1055723\)
9075.q4 9075.q \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.536762106$ $[1, 0, 1, 131524, -6113527]$ \(y^2+xy+y=x^3+131524x-6113527\)
9075.r1 9075.r \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.732393441$ $[1, 0, 1, -7076, 227423]$ \(y^2+xy+y=x^3-7076x+227423\)
9075.r2 9075.r \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.464786883$ $[1, 0, 1, -201, 7423]$ \(y^2+xy+y=x^3-201x+7423\)
9075.s1 9075.s \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $7.370491957$ $[0, 1, 1, -25208, 1570619]$ \(y^2+y=x^3+x^2-25208x+1570619\)
9075.s2 9075.s \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.474098391$ $[0, 1, 1, 202, -4801]$ \(y^2+y=x^3+x^2+202x-4801\)
9075.t1 9075.t \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $4.572723892$ $[0, 1, 1, 11092, -81031]$ \(y^2+y=x^3+x^2+11092x-81031\)
  Download to