Properties

Label 9075.q
Number of curves $4$
Conductor $9075$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 9075.q have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9075.q do not have complex multiplication.

Modular form 9075.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + q^{6} + 4 q^{7} - 3 q^{8} + q^{9} - q^{12} - 2 q^{13} + 4 q^{14} - q^{16} - 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 9075.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9075.q1 9075k3 \([1, 0, 1, -443226, -113501027]\) \(347873904937/395307\) \(10942351003546875\) \([2]\) \(92160\) \(1.9910\)  
9075.q2 9075k2 \([1, 0, 1, -34851, -789527]\) \(169112377/88209\) \(2441681628890625\) \([2, 2]\) \(46080\) \(1.6445\)  
9075.q3 9075k1 \([1, 0, 1, -19726, 1055723]\) \(30664297/297\) \(8221150265625\) \([2]\) \(23040\) \(1.2979\) \(\Gamma_0(N)\)-optimal
9075.q4 9075k4 \([1, 0, 1, 131524, -6113527]\) \(9090072503/5845851\) \(-161816900678296875\) \([2]\) \(92160\) \(1.9910\)