Properties

Label 90354.c
Number of curves $4$
Conductor $90354$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 90354.c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 90354.c do not have complex multiplication.

Modular form 90354.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - 2 q^{5} + q^{6} - 4 q^{7} - q^{8} + q^{9} + 2 q^{10} - q^{11} - q^{12} + 6 q^{13} + 4 q^{14} + 2 q^{15} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 90354.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
90354.c1 90354a4 \([1, 1, 0, -481916, -128968170]\) \(4824238966273/66\) \(169337942994\) \([2]\) \(811008\) \(1.7105\)  
90354.c2 90354a2 \([1, 1, 0, -30146, -2020800]\) \(1180932193/4356\) \(11176304237604\) \([2, 2]\) \(405504\) \(1.3639\)  
90354.c3 90354a3 \([1, 1, 0, -16456, -3847046]\) \(-192100033/2371842\) \(-6085497657375378\) \([2]\) \(811008\) \(1.7105\)  
90354.c4 90354a1 \([1, 1, 0, -2766, -156]\) \(912673/528\) \(1354703543952\) \([2]\) \(202752\) \(1.0174\) \(\Gamma_0(N)\)-optimal