Properties

Label 90160bq
Number of curves $1$
Conductor $90160$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 90160bq1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 90160bq do not have complex multiplication.

Modular form 90160.2.a.bq

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} + q^{9} + 2 q^{11} - 6 q^{13} + 2 q^{15} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 90160bq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
90160.g1 90160bq1 \([0, 1, 0, -45341, 3851959]\) \(-16771598147584/804542875\) \(-494517105376000\) \([]\) \(427680\) \(1.5819\) \(\Gamma_0(N)\)-optimal