Properties

Label 89232.bk
Number of curves $4$
Conductor $89232$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 89232.bk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 89232.bk do not have complex multiplication.

Modular form 89232.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} - q^{11} - 2 q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 89232.bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89232.bk1 89232cd4 \([0, 1, 0, -951864, 357128916]\) \(4824238966273/66\) \(1304860237824\) \([2]\) \(737280\) \(1.8807\)  
89232.bk2 89232cd2 \([0, 1, 0, -59544, 5554836]\) \(1180932193/4356\) \(86120775696384\) \([2, 2]\) \(368640\) \(1.5341\)  
89232.bk3 89232cd3 \([0, 1, 0, -32504, 10649172]\) \(-192100033/2371842\) \(-46892762366681088\) \([2]\) \(737280\) \(1.8807\)  
89232.bk4 89232cd1 \([0, 1, 0, -5464, -4588]\) \(912673/528\) \(10438881902592\) \([2]\) \(184320\) \(1.1875\) \(\Gamma_0(N)\)-optimal