Properties

Label 880.i
Number of curves $2$
Conductor $880$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 880.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 880.i do not have complex multiplication.

Modular form 880.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 3 q^{7} - 2 q^{9} - q^{11} - 6 q^{13} + q^{15} - 7 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 880.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
880.i1 880g2 \([0, 1, 0, -95040, 11245748]\) \(-23178622194826561/1610510\) \(-6596648960\) \([]\) \(2400\) \(1.3382\)  
880.i2 880g1 \([0, 1, 0, 160, 3188]\) \(109902239/1100000\) \(-4505600000\) \([]\) \(480\) \(0.53350\) \(\Gamma_0(N)\)-optimal