Properties

Label 87120.dp
Number of curves $1$
Conductor $87120$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 87120.dp1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 87120.dp do not have complex multiplication.

Modular form 87120.2.a.dp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 3 q^{7} + q^{13} + 7 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 87120.dp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87120.dp1 87120gf1 \([0, 0, 0, -5907, 69586]\) \(63088729/30720\) \(11099260846080\) \([]\) \(202752\) \(1.1966\) \(\Gamma_0(N)\)-optimal