Properties

Label 87120.g
Number of curves $4$
Conductor $87120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 87120.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 87120.g do not have complex multiplication.

Modular form 87120.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} + 4 q^{13} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 87120.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87120.g1 87120dd3 \([0, 0, 0, -187032483, -984516180318]\) \(5066026756449723/11000000\) \(1571086281904128000000\) \([2]\) \(14929920\) \(3.3140\)  
87120.g2 87120dd4 \([0, 0, 0, -184941603, -1007603259102]\) \(-4898016158612283/236328125000\) \(-33753806837784000000000000\) \([2]\) \(29859840\) \(3.6606\)  
87120.g3 87120dd1 \([0, 0, 0, -3035043, -431086942]\) \(15781142246787/8722841600\) \(1708983261875876659200\) \([2]\) \(4976640\) \(2.7647\) \(\Gamma_0(N)\)-optimal
87120.g4 87120dd2 \([0, 0, 0, 11833437, -3407756638]\) \(935355271080573/566899520000\) \(-111067222732265226240000\) \([2]\) \(9953280\) \(3.1113\)