Properties

Label 86640ca
Number of curves $2$
Conductor $86640$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ca1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 86640ca have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 86640ca do not have complex multiplication.

Modular form 86640.2.a.ca

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 2 q^{7} + q^{9} - 4 q^{11} + 6 q^{13} + q^{15} + 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 86640ca

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
86640.o2 86640ca1 \([0, -1, 0, -453536, -412203264]\) \(-53540005609/350208000\) \(-67485056586743808000\) \([2]\) \(2903040\) \(2.4883\) \(\Gamma_0(N)\)-optimal
86640.o1 86640ca2 \([0, -1, 0, -11543456, -15059769600]\) \(882774443450089/2166000000\) \(417388045295616000000\) \([2]\) \(5806080\) \(2.8349\)