Properties

Label 7942.o
Number of curves $1$
Conductor $7942$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 7942.o1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(11\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7942.o do not have complex multiplication.

Modular form 7942.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 4 q^{5} - 4 q^{7} + q^{8} - 3 q^{9} - 4 q^{10} + q^{11} + 7 q^{13} - 4 q^{14} + q^{16} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 7942.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7942.o1 7942q1 \([1, -1, 1, 293, 1675]\) \(21414159/22528\) \(-2935871488\) \([]\) \(7920\) \(0.50341\) \(\Gamma_0(N)\)-optimal