Properties

Label 76664.k
Number of curves $2$
Conductor $76664$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76664.k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76664.k do not have complex multiplication.

Modular form 76664.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + 4 q^{5} + q^{7} + q^{9} + 8 q^{15} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 76664.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76664.k1 76664k2 \([0, -1, 0, -55216, -4915572]\) \(3543122/49\) \(257475776595968\) \([2]\) \(405504\) \(1.5708\)  
76664.k2 76664k1 \([0, -1, 0, -456, -206212]\) \(-4/7\) \(-18391126899712\) \([2]\) \(202752\) \(1.2242\) \(\Gamma_0(N)\)-optimal