Properties

Label 76050.i
Number of curves $4$
Conductor $76050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76050.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76050.i do not have complex multiplication.

Modular form 76050.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 4 q^{7} - q^{8} + 4 q^{14} + q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 76050.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76050.i1 76050l4 \([1, -1, 0, -19114692, 19271636216]\) \(520300455507/193072360\) \(286610130916120951875000\) \([2]\) \(13934592\) \(3.2010\)  
76050.i2 76050l2 \([1, -1, 0, -16896567, 26737105591]\) \(261984288445803/42250\) \(86034099480468750\) \([2]\) \(4644864\) \(2.6517\)  
76050.i3 76050l1 \([1, -1, 0, -1052817, 420636841]\) \(-63378025803/812500\) \(-1654501913085937500\) \([2]\) \(2322432\) \(2.3051\) \(\Gamma_0(N)\)-optimal
76050.i4 76050l3 \([1, -1, 0, 3700308, 2137571216]\) \(3774555693/3515200\) \(-5218209028968975000000\) \([2]\) \(6967296\) \(2.8544\)