Properties

Label 75712.bu
Number of curves $4$
Conductor $75712$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 75712.bu have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 75712.bu do not have complex multiplication.

Modular form 75712.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} - 3 q^{9} - 4 q^{11} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 75712.bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
75712.bu1 75712bt4 \([0, 0, 0, -639589964, -6223771098480]\) \(22868021811807457713/8953460393696\) \(11328983717494232465801216\) \([2]\) \(23224320\) \(3.7722\)  
75712.bu2 75712bt3 \([0, 0, 0, -338472524, 2350626226832]\) \(3389174547561866673/74853681183008\) \(94713786405296186712915968\) \([2]\) \(23224320\) \(3.7722\)  
75712.bu3 75712bt2 \([0, 0, 0, -46007884, -65950600560]\) \(8511781274893233/3440817243136\) \(4353731496908956113043456\) \([2, 2]\) \(11612160\) \(3.4256\)  
75712.bu4 75712bt1 \([0, 0, 0, 9370036, -7493668208]\) \(71903073502287/60782804992\) \(-76909639153911209132032\) \([2]\) \(5806080\) \(3.0791\) \(\Gamma_0(N)\)-optimal