Properties

Label 75088.b
Number of curves $2$
Conductor $75088$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 75088.b have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 75088.b do not have complex multiplication.

Modular form 75088.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} - q^{5} - q^{7} + 6 q^{9} + 2 q^{11} + q^{13} + 3 q^{15} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 75088.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
75088.b1 75088bj2 \([0, 0, 0, -1228483, -575017406]\) \(-1064019559329/125497034\) \(-24183269488299843584\) \([]\) \(2201472\) \(2.4552\)  
75088.b2 75088bj1 \([0, 0, 0, -15523, 1138594]\) \(-2146689/1664\) \(-320652681150464\) \([]\) \(314496\) \(1.4822\) \(\Gamma_0(N)\)-optimal