Properties

Label 7488.p
Number of curves $4$
Conductor $7488$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7488.p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7488.p do not have complex multiplication.

Modular form 7488.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 4 q^{11} - q^{13} + 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 7488.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7488.p1 7488q3 \([0, 0, 0, -134796, 19048624]\) \(11339065490696/351\) \(8384643072\) \([2]\) \(24576\) \(1.4086\)  
7488.p2 7488q2 \([0, 0, 0, -8436, 296800]\) \(22235451328/123201\) \(367876214784\) \([2, 2]\) \(12288\) \(1.0620\)  
7488.p3 7488q4 \([0, 0, 0, -3756, 624400]\) \(-245314376/6908733\) \(-165034929586176\) \([2]\) \(24576\) \(1.4086\)  
7488.p4 7488q1 \([0, 0, 0, -831, -1316]\) \(1360251712/771147\) \(35978634432\) \([2]\) \(6144\) \(0.71545\) \(\Gamma_0(N)\)-optimal