Learn more

Refine search


Results (1-50 of 134 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
7488.a1 7488.a \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.734032953$ $[0, 0, 0, -10812, 432720]$ \(y^2=x^3-10812x+432720\)
7488.a2 7488.a \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.367016476$ $[0, 0, 0, -672, 6840]$ \(y^2=x^3-672x+6840\)
7488.b1 7488.b \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.723617667$ $[0, 0, 0, -2172, -35440]$ \(y^2=x^3-2172x-35440\)
7488.b2 7488.b \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.861808833$ $[0, 0, 0, 168, -2680]$ \(y^2=x^3+168x-2680\)
7488.c1 7488.c \( 2^{6} \cdot 3^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.429830057$ $[0, 0, 0, -732, 6640]$ \(y^2=x^3-732x+6640\)
7488.c2 7488.c \( 2^{6} \cdot 3^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.719320230$ $[0, 0, 0, -192, -920]$ \(y^2=x^3-192x-920\)
7488.d1 7488.d \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.878026250$ $[0, 0, 0, -732, -6640]$ \(y^2=x^3-732x-6640\)
7488.d2 7488.d \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.939013125$ $[0, 0, 0, -192, 920]$ \(y^2=x^3-192x+920\)
7488.e1 7488.e \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2172, 35440]$ \(y^2=x^3-2172x+35440\)
7488.e2 7488.e \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 168, 2680]$ \(y^2=x^3+168x+2680\)
7488.f1 7488.f \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -10812, -432720]$ \(y^2=x^3-10812x-432720\)
7488.f2 7488.f \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -672, -6840]$ \(y^2=x^3-672x-6840\)
7488.g1 7488.g \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -264684, 52413104]$ \(y^2=x^3-264684x+52413104\)
7488.g2 7488.g \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2604, 101936]$ \(y^2=x^3-2604x+101936\)
7488.g3 7488.g \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 276, -2896]$ \(y^2=x^3+276x-2896\)
7488.h1 7488.h \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $7.652505194$ $[0, 0, 0, -264684, -52413104]$ \(y^2=x^3-264684x-52413104\)
7488.h2 7488.h \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.550835064$ $[0, 0, 0, -2604, -101936]$ \(y^2=x^3-2604x-101936\)
7488.h3 7488.h \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.850278354$ $[0, 0, 0, 276, 2896]$ \(y^2=x^3+276x+2896\)
7488.i1 7488.i \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.285028526$ $[0, 0, 0, -10956, -430576]$ \(y^2=x^3-10956x-430576\)
7488.i2 7488.i \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.642514263$ $[0, 0, 0, -1596, 14960]$ \(y^2=x^3-1596x+14960\)
7488.i3 7488.i \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.821257131$ $[0, 0, 0, -1416, 20504]$ \(y^2=x^3-1416x+20504\)
7488.i4 7488.i \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.285028526$ $[0, 0, 0, 4884, 105680]$ \(y^2=x^3+4884x+105680\)
7488.j1 7488.j \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -36396, -2671056]$ \(y^2=x^3-36396x-2671056\)
7488.j2 7488.j \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1836, -58320]$ \(y^2=x^3-1836x-58320\)
7488.k1 7488.k \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.956274024$ $[0, 0, 0, -1836, 20304]$ \(y^2=x^3-1836x+20304\)
7488.k2 7488.k \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.912548049$ $[0, 0, 0, 324, 2160]$ \(y^2=x^3+324x+2160\)
7488.l1 7488.l \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.347479513$ $[0, 0, 0, -516, 3616]$ \(y^2=x^3-516x+3616\)
7488.l2 7488.l \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.694959026$ $[0, 0, 0, 69, 340]$ \(y^2=x^3+69x+340\)
7488.m1 7488.m \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -134796, -19048624]$ \(y^2=x^3-134796x-19048624\)
7488.m2 7488.m \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -8436, -296800]$ \(y^2=x^3-8436x-296800\)
7488.m3 7488.m \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3756, -624400]$ \(y^2=x^3-3756x-624400\)
7488.m4 7488.m \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -831, 1316]$ \(y^2=x^3-831x+1316\)
7488.n1 7488.n \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.901721521$ $[0, 0, 0, -51, -140]$ \(y^2=x^3-51x-140\)
7488.n2 7488.n \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.950860760$ $[0, 0, 0, -36, -224]$ \(y^2=x^3-36x-224\)
7488.o1 7488.o \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.951704758$ $[0, 0, 0, -51, 140]$ \(y^2=x^3-51x+140\)
7488.o2 7488.o \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.975852379$ $[0, 0, 0, -36, 224]$ \(y^2=x^3-36x+224\)
7488.p1 7488.p \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -134796, 19048624]$ \(y^2=x^3-134796x+19048624\)
7488.p2 7488.p \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -8436, 296800]$ \(y^2=x^3-8436x+296800\)
7488.p3 7488.p \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3756, 624400]$ \(y^2=x^3-3756x+624400\)
7488.p4 7488.p \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -831, -1316]$ \(y^2=x^3-831x-1316\)
7488.q1 7488.q \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.833591857$ $[0, 0, 0, -516, -3616]$ \(y^2=x^3-516x-3616\)
7488.q2 7488.q \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.667183715$ $[0, 0, 0, 69, -340]$ \(y^2=x^3+69x-340\)
7488.r1 7488.r \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1836, -20304]$ \(y^2=x^3-1836x-20304\)
7488.r2 7488.r \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 324, -2160]$ \(y^2=x^3+324x-2160\)
7488.s1 7488.s \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.310282413$ $[0, 0, 0, -36396, 2671056]$ \(y^2=x^3-36396x+2671056\)
7488.s2 7488.s \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.620564827$ $[0, 0, 0, -1836, 58320]$ \(y^2=x^3-1836x+58320\)
7488.t1 7488.t \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -10956, 430576]$ \(y^2=x^3-10956x+430576\)
7488.t2 7488.t \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1596, -14960]$ \(y^2=x^3-1596x-14960\)
7488.t3 7488.t \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1416, -20504]$ \(y^2=x^3-1416x-20504\)
7488.t4 7488.t \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 4884, -105680]$ \(y^2=x^3+4884x-105680\)
Next   Download to