Properties

Label 71632p
Number of curves $3$
Conductor $71632$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 71632p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 71632p do not have complex multiplication.

Modular form 71632.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} - 2 q^{9} + 4 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 71632p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
71632.f3 71632p1 \([0, -1, 0, -6453, 200125]\) \(4096000/37\) \(268483612672\) \([]\) \(64800\) \(1.0156\) \(\Gamma_0(N)\)-optimal
71632.f2 71632p2 \([0, -1, 0, -45173, -3563459]\) \(1404928000/50653\) \(367554065747968\) \([]\) \(194400\) \(1.5649\)  
71632.f1 71632p3 \([0, -1, 0, -3626773, -2657242531]\) \(727057727488000/37\) \(268483612672\) \([]\) \(583200\) \(2.1142\)