Properties

Label 69360.f
Number of curves $1$
Conductor $69360$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 69360.f1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 69360.f do not have complex multiplication.

Modular form 69360.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 3 q^{7} + q^{9} + 3 q^{11} - 4 q^{13} + q^{15} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 69360.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
69360.f1 69360ch1 \([0, -1, 0, -355566, -81510609]\) \(-12872772702976/3984375\) \(-1538770023750000\) \([]\) \(580608\) \(1.8906\) \(\Gamma_0(N)\)-optimal