Properties

Label 6864.l
Number of curves $2$
Conductor $6864$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6864.l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6864.l do not have complex multiplication.

Modular form 6864.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} - 4 q^{7} + q^{9} - q^{11} - q^{13} - 2 q^{15} + 4 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 6864.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6864.l1 6864b2 \([0, -1, 0, -352, 352]\) \(2361864386/1355211\) \(2775472128\) \([2]\) \(3840\) \(0.50167\)  
6864.l2 6864b1 \([0, -1, 0, 88, 0]\) \(72765788/42471\) \(-43490304\) \([2]\) \(1920\) \(0.15509\) \(\Gamma_0(N)\)-optimal