Show commands: SageMath
Rank
The elliptic curves in class 66880dg have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 66880dg do not have complex multiplication.Modular form 66880.2.a.dg
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 66880dg
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
66880.o4 | 66880dg1 | \([0, 1, 0, -101025, -12392225]\) | \(434985385981609/30179600\) | \(7911401062400\) | \([2]\) | \(258048\) | \(1.5285\) | \(\Gamma_0(N)\)-optimal |
66880.o3 | 66880dg2 | \([0, 1, 0, -107425, -10739745]\) | \(523002686860009/113851032020\) | \(29845364937850880\) | \([2]\) | \(516096\) | \(1.8750\) | |
66880.o2 | 66880dg3 | \([0, 1, 0, -204385, 16746783]\) | \(3601910963276569/1618496000000\) | \(424279015424000000\) | \([2]\) | \(774144\) | \(2.0778\) | |
66880.o1 | 66880dg4 | \([0, 1, 0, -2764385, 1767274783]\) | \(8912089320684236569/5116268168000\) | \(1341199002632192000\) | \([2]\) | \(1548288\) | \(2.4243\) |