Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-11752033x+15191643937\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-11752033xz^2+15191643937z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-951914700x+11071852686000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2272, 14625)$ | $1.3266283464650743383360717939$ | $\infty$ |
$(3897, 169000)$ | $0$ | $4$ |
Integral points
\( \left(2207, 0\right) \), \((2272,\pm 14625)\), \((2857,\pm 70200)\), \((3897,\pm 169000)\), \((6601,\pm 474552)\), \((15897,\pm 1961000)\), \((46147,\pm 9886500)\)
Invariants
Conductor: | $N$ | = | \( 62400 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $4228748057664000000000$ | = | $2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{350584567631475848}{8259273550125} \) | = | $2^{3} \cdot 3^{-4} \cdot 5^{-3} \cdot 11^{3} \cdot 13^{-8} \cdot 32051^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9350840690496053191454413237$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2639311371326234950735215053$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0116459533211948$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.475089074245859$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.3266283464650743383360717939$ |
|
Real period: | $\Omega$ | ≈ | $0.13825594438322753894174792452$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot2^{3} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.9346280781774149117279988589 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.934628078 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.138256 \cdot 1.326628 \cdot 256}{4^2} \\ & \approx 2.934628078\end{aligned}$$
Modular invariants
Modular form 62400.2.a.m
For more coefficients, see the Downloads section to the right.
Modular degree: | 4718592 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{5}^{*}$ | additive | -1 | 6 | 15 | 0 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$5$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
$13$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.52 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1040 = 2^{4} \cdot 5 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 15 & 166 \\ 754 & 995 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1025 & 16 \\ 1024 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 772 & 771 \\ 497 & 494 \end{array}\right),\left(\begin{array}{rr} 787 & 270 \\ 104 & 613 \end{array}\right),\left(\begin{array}{rr} 561 & 16 \\ 328 & 129 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 402 & 1037 \\ 739 & 1020 \end{array}\right)$.
The torsion field $K:=\Q(E[1040])$ is a degree-$1610219520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 25 = 5^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 20800 = 2^{6} \cdot 5^{2} \cdot 13 \) |
$5$ | additive | $18$ | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 62400ff
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 6240z3, its twist by $40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.4.256000.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.262144000000.9 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2621440000.10 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | add | ord | ss | split | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | - | 1 | 1,1 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.