Show commands for:
SageMath
sage: E = EllipticCurve("ff1")
sage: E.isogeny_class()
Elliptic curves in class 62400ff
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
62400.m4 | 62400ff1 | [0, -1, 0, 326092, -51090438] | [2] | 1179648 | \(\Gamma_0(N)\)-optimal |
62400.m3 | 62400ff2 | [0, -1, 0, -1627033, -451481063] | [2, 2] | 2359296 | |
62400.m2 | 62400ff3 | [0, -1, 0, -11752033, 15191643937] | [4] | 4718592 | |
62400.m1 | 62400ff4 | [0, -1, 0, -22752033, -41750856063] | [2] | 4718592 |
Rank
sage: E.rank()
The elliptic curves in class 62400ff have rank \(1\).
Complex multiplication
The elliptic curves in class 62400ff do not have complex multiplication.Modular form 62400.2.a.ff
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.