Properties

Label 6160.i
Number of curves $4$
Conductor $6160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6160.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6160.i do not have complex multiplication.

Modular form 6160.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - 3 q^{9} + q^{11} + 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 6160.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6160.i1 6160p4 \([0, 0, 0, -52266707, 145440654994]\) \(3855131356812007128171561/8967612500\) \(36731340800000\) \([4]\) \(245760\) \(2.7332\)  
6160.i2 6160p3 \([0, 0, 0, -3439187, 2019150866]\) \(1098325674097093229481/205612182617187500\) \(842187500000000000000\) \([2]\) \(245760\) \(2.7332\)  
6160.i3 6160p2 \([0, 0, 0, -3266707, 2272454994]\) \(941226862950447171561/45393906250000\) \(185933440000000000\) \([2, 2]\) \(122880\) \(2.3866\)  
6160.i4 6160p1 \([0, 0, 0, -193427, 39409746]\) \(-195395722614328041/50730248800000\) \(-207791099084800000\) \([2]\) \(61440\) \(2.0400\) \(\Gamma_0(N)\)-optimal