Show commands: SageMath
Rank
The elliptic curves in class 6150i have rank \(2\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 6150i do not have complex multiplication.Modular form 6150.2.a.i
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6150i
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6150.a3 | 6150i1 | \([1, 1, 0, -225, 1125]\) | \(81182737/5904\) | \(92250000\) | \([2]\) | \(3072\) | \(0.27471\) | \(\Gamma_0(N)\)-optimal |
6150.a2 | 6150i2 | \([1, 1, 0, -725, -6375]\) | \(2703045457/544644\) | \(8510062500\) | \([2, 2]\) | \(6144\) | \(0.62129\) | |
6150.a1 | 6150i3 | \([1, 1, 0, -10975, -447125]\) | \(9357915116017/538002\) | \(8406281250\) | \([2]\) | \(12288\) | \(0.96786\) | |
6150.a4 | 6150i4 | \([1, 1, 0, 1525, -35625]\) | \(25076571983/50863698\) | \(-794745281250\) | \([2]\) | \(12288\) | \(0.96786\) |