Properties

Label 6150i
Number of curves $4$
Conductor $6150$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6150i have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6150i do not have complex multiplication.

Modular form 6150.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - 4 q^{7} - q^{8} + q^{9} - 4 q^{11} - q^{12} - 2 q^{13} + 4 q^{14} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6150i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6150.a3 6150i1 \([1, 1, 0, -225, 1125]\) \(81182737/5904\) \(92250000\) \([2]\) \(3072\) \(0.27471\) \(\Gamma_0(N)\)-optimal
6150.a2 6150i2 \([1, 1, 0, -725, -6375]\) \(2703045457/544644\) \(8510062500\) \([2, 2]\) \(6144\) \(0.62129\)  
6150.a1 6150i3 \([1, 1, 0, -10975, -447125]\) \(9357915116017/538002\) \(8406281250\) \([2]\) \(12288\) \(0.96786\)  
6150.a4 6150i4 \([1, 1, 0, 1525, -35625]\) \(25076571983/50863698\) \(-794745281250\) \([2]\) \(12288\) \(0.96786\)