Properties

Label 61370t
Number of curves $1$
Conductor $61370$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 61370t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(17\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 61370t do not have complex multiplication.

Modular form 61370.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} - q^{5} - 3 q^{6} + 2 q^{7} + q^{8} + 6 q^{9} - q^{10} - 4 q^{11} - 3 q^{12} + 3 q^{13} + 2 q^{14} + 3 q^{15} + q^{16} + q^{17} + 6 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 61370t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
61370.m1 61370t1 \([1, -1, 1, -3678, 86871]\) \(-116930169/170\) \(-7997799770\) \([]\) \(140760\) \(0.80225\) \(\Gamma_0(N)\)-optimal