Learn more

Refine search


Results (1-50 of 70 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
6050.a1 6050.a \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.108691077$ $[1, -1, 0, 38, -104]$ \(y^2+xy=x^3-x^2+38x-104\) 20.2.0.a.1 $[(14, 48)]$
6050.b1 6050.b \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.439042084$ $[1, -1, 0, -1777, -110819]$ \(y^2+xy=x^3-x^2-1777x-110819\) 440.2.0.? $[(69, 268)]$
6050.c1 6050.c \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -16412201, 25589509548]$ \(y^2+xy+y=x^3-16412201x+25589509548\) 8.2.0.b.1 $[ ]$
6050.d1 6050.d \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.600183226$ $[1, 0, 1, -93151, -10948302]$ \(y^2+xy+y=x^3-93151x-10948302\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.d.1, 20.6.0.e.1, $\ldots$ $[(-177, 44)]$
6050.d2 6050.d \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.200366453$ $[1, 0, 1, -5151, -212302]$ \(y^2+xy+y=x^3-5151x-212302\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.c.1, 20.6.0.e.1, $\ldots$ $[(151, 1492)]$
6050.e1 6050.e \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.419392063$ $[1, 0, 1, -13951, 633048]$ \(y^2+xy+y=x^3-13951x+633048\) 3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 33.8.0-3.a.1.1, 264.16.0.? $[(68, -33)]$
6050.e2 6050.e \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.473130687$ $[1, 0, 1, -201, 548]$ \(y^2+xy+y=x^3-201x+548\) 3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 33.8.0-3.a.1.2, 264.16.0.? $[(2, 11)]$
6050.f1 6050.f \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $4.332795033$ $[1, 1, 0, -3669690, -2707342700]$ \(y^2+xy=x^3+x^2-3669690x-2707342700\) 5.12.0.a.1, 25.60.0.a.1, 40.24.0-5.a.1.8, 55.24.0-5.a.1.1, 200.120.0.?, $\ldots$ $[(2305, 31820)]$
6050.f2 6050.f \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.173311801$ $[1, 1, 0, -3390, 74650]$ \(y^2+xy=x^3+x^2-3390x+74650\) 5.12.0.a.2, 25.60.0.a.2, 40.24.0-5.a.2.8, 55.24.0-5.a.2.1, 200.120.0.?, $\ldots$ $[(-5, 305)]$
6050.f3 6050.f \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.866559006$ $[1, 1, 0, 23835, -787475]$ \(y^2+xy=x^3+x^2+23835x-787475\) 5.60.0.a.1, 40.120.0-5.a.1.8, 55.120.0-5.a.1.1, 275.600.12.?, 440.240.5.?, $\ldots$ $[(1095, 36055)]$
6050.g1 6050.g \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1837750, -975203500]$ \(y^2+xy=x^3+x^2-1837750x-975203500\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 165.8.0.?, $\ldots$ $[ ]$
6050.g2 6050.g \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 7312875, -4553097875]$ \(y^2+xy=x^3+x^2+7312875x-4553097875\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 165.8.0.?, $\ldots$ $[ ]$
6050.h1 6050.h \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -379700, 89899000]$ \(y^2+xy=x^3+x^2-379700x+89899000\) 3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.1, 24.8.0.a.1, $\ldots$ $[ ]$
6050.h2 6050.h \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1575, 283375]$ \(y^2+xy=x^3+x^2-1575x+283375\) 3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.2, 24.8.0.a.1, $\ldots$ $[ ]$
6050.h3 6050.h \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -365, -3395]$ \(y^2+xy=x^3+x^2-365x-3395\) 3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.4, 24.8.0.a.1, $\ldots$ $[ ]$
6050.h4 6050.h \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 2660, 25040]$ \(y^2+xy=x^3+x^2+2660x+25040\) 3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.3, 24.8.0.a.1, $\ldots$ $[ ]$
6050.i1 6050.i \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -267775, -53954875]$ \(y^2+xy=x^3+x^2-267775x-53954875\) 3.4.0.a.1, 24.8.0-3.a.1.6, 165.8.0.?, 440.2.0.?, 1320.16.0.? $[ ]$
6050.i2 6050.i \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 896850, -278727500]$ \(y^2+xy=x^3+x^2+896850x-278727500\) 3.4.0.a.1, 24.8.0-3.a.1.5, 165.8.0.?, 440.2.0.?, 1320.16.0.? $[ ]$
6050.j1 6050.j \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.524356124$ $[1, -1, 0, -17, 61]$ \(y^2+xy=x^3-x^2-17x+61\) 5.15.0.a.1, 40.30.1.a.1, 55.30.0.b.1, 88.2.0.?, 440.60.3.? $[(3, 4)]$
6050.k1 6050.k \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -51992, -9423584]$ \(y^2+xy=x^3-x^2-51992x-9423584\) 5.15.0.a.1, 40.30.1.a.1, 55.30.0.b.1, 88.2.0.?, 440.60.3.? $[ ]$
6050.l1 6050.l \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -7626, -828852]$ \(y^2+xy+y=x^3-7626x-828852\) 20.2.0.a.1 $[ ]$
6050.m1 6050.m \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.116387049$ $[1, 0, 1, -4876, 141898]$ \(y^2+xy+y=x^3-4876x+141898\) 3.6.0.b.1, 33.12.0.a.1, 120.12.0.?, 440.2.0.?, 1320.24.1.? $[(32, 121)]$
6050.n1 6050.n \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -2785, 64365]$ \(y^2+xy=x^3+x^2-2785x+64365\) 3.4.0.a.1, 88.2.0.?, 120.8.0.?, 165.8.0.?, 264.8.0.?, $\ldots$ $[ ]$
6050.n2 6050.n \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 240, -370]$ \(y^2+xy=x^3+x^2+240x-370\) 3.4.0.a.1, 88.2.0.?, 120.8.0.?, 165.8.0.?, 264.8.0.?, $\ldots$ $[ ]$
6050.o1 6050.o \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $6.739483110$ $[1, 1, 0, -5425, -156075]$ \(y^2+xy=x^3+x^2-5425x-156075\) 8.2.0.b.1 $[(-5199/11, 31446/11)]$
6050.p1 6050.p \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.639749361$ $[1, 1, 0, -621700, 188514000]$ \(y^2+xy=x^3+x^2-621700x+188514000\) 88.2.0.? $[(369, 2901)]$
6050.q1 6050.q \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.077842472$ $[1, 1, 0, -319200, -69518500]$ \(y^2+xy=x^3+x^2-319200x-69518500\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[(2210, 99020)]$
6050.q2 6050.q \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $10.15568494$ $[1, 1, 0, -16700, -1456000]$ \(y^2+xy=x^3+x^2-16700x-1456000\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[(44644/9, 8937800/9)]$
6050.r1 6050.r \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -67520, -6781210]$ \(y^2+xy=x^3+x^2-67520x-6781210\) 3.4.0.a.1, 8.2.0.b.1, 15.8.0-3.a.1.1, 24.8.0.b.1, 120.16.0.? $[ ]$
6050.r2 6050.r \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -970, -6420]$ \(y^2+xy=x^3+x^2-970x-6420\) 3.4.0.a.1, 8.2.0.b.1, 15.8.0-3.a.1.2, 24.8.0.b.1, 120.16.0.? $[ ]$
6050.s1 6050.s \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1300, 18000]$ \(y^2+xy=x^3+x^2-1300x+18000\) 3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 24.16.0.b.2, 165.8.0.?, $\ldots$ $[ ]$
6050.s2 6050.s \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 75, 125]$ \(y^2+xy=x^3+x^2+75x+125\) 3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 24.16.0.b.1, 165.8.0.?, $\ldots$ $[ ]$
6050.t1 6050.t \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.553290452$ $[1, -1, 0, 14558, 625466]$ \(y^2+xy=x^3-x^2+14558x+625466\) 440.2.0.? $[(-149/3, 16861/3)]$
6050.u1 6050.u \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $5.763503999$ $[1, -1, 0, 114383, 15699041]$ \(y^2+xy=x^3-x^2+114383x+15699041\) 20.2.0.a.1 $[(2296/3, 208181/3)]$
6050.v1 6050.v \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 4575, 124677]$ \(y^2+xy+y=x^3-x^2+4575x+124677\) 20.2.0.a.1 $[ ]$
6050.w1 6050.w \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -1688013, -844275233]$ \(y^2+xy=x^3-1688013x-844275233\) 3.8.0-3.a.1.1, 8.2.0.b.1, 24.16.0-24.b.1.4 $[ ]$
6050.w2 6050.w \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -24263, -753983]$ \(y^2+xy=x^3-24263x-753983\) 3.8.0-3.a.1.2, 8.2.0.b.1, 24.16.0-24.b.1.8 $[ ]$
6050.x1 6050.x \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -12768, -556148]$ \(y^2+xy=x^3-12768x-556148\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[ ]$
6050.x2 6050.x \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -668, -11648]$ \(y^2+xy=x^3-668x-11648\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[ ]$
6050.y1 6050.y \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.110313389$ $[1, 0, 0, -24868, 1508112]$ \(y^2+xy=x^3-24868x+1508112\) 88.2.0.? $[(98, 72)]$
6050.z1 6050.z \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -11271213, 14560918417]$ \(y^2+xy=x^3-11271213x+14560918417\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.d.1, 20.6.0.e.1, $\ldots$ $[ ]$
6050.z2 6050.z \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -623213, 281950417]$ \(y^2+xy=x^3-623213x+281950417\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.c.1, 20.6.0.e.1, $\ldots$ $[ ]$
6050.ba1 6050.ba \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.419715423$ $[1, 0, 0, -135638, -19238108]$ \(y^2+xy=x^3-135638x-19238108\) 8.2.0.b.1 $[(-212, 90)]$
6050.bb1 6050.bb \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -69638, 8184892]$ \(y^2+xy=x^3-69638x+8184892\) 3.4.0.a.1, 24.8.0-3.a.1.5, 33.8.0-3.a.1.1, 88.2.0.?, 264.16.0.? $[ ]$
6050.bb2 6050.bb \( 2 \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 5987, -58233]$ \(y^2+xy=x^3+5987x-58233\) 3.4.0.a.1, 24.8.0-3.a.1.6, 33.8.0-3.a.1.2, 88.2.0.?, 264.16.0.? $[ ]$
6050.bc1 6050.bc \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.672977302$ $[1, 1, 1, -3088, -181719]$ \(y^2+xy+y=x^3+x^2-3088x-181719\) 3.4.0.a.1, 24.8.0-3.a.1.6, 165.8.0.?, 440.2.0.?, 1320.16.0.? $[(215, 2917)]$
6050.bc2 6050.bc \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.018931907$ $[1, 1, 1, 27162, 4295281]$ \(y^2+xy+y=x^3+x^2+27162x+4295281\) 3.4.0.a.1, 24.8.0-3.a.1.5, 165.8.0.?, 440.2.0.?, 1320.16.0.? $[(695/2, 29551/2)]$
6050.bd1 6050.bd \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.071114547$ $[1, 1, 1, -15188, 725781]$ \(y^2+xy+y=x^3+x^2-15188x+725781\) 3.4.0.a.1, 12.8.0-3.a.1.3, 15.8.0-3.a.1.2, 20.2.0.a.1, 60.16.0-60.a.1.7 $[(325, 5337)]$
6050.bd2 6050.bd \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.213343642$ $[1, 1, 1, 60437, 3448281]$ \(y^2+xy+y=x^3+x^2+60437x+3448281\) 3.4.0.a.1, 12.8.0-3.a.1.4, 15.8.0-3.a.1.1, 20.2.0.a.1, 60.16.0-60.a.1.6 $[(275, 6262)]$
6050.be1 6050.be \( 2 \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.178812584$ $[1, -1, 1, -430, 7197]$ \(y^2+xy+y=x^3-x^2-430x+7197\) 5.15.0.a.1, 40.30.1.a.1, 55.30.0.b.1, 88.2.0.?, 440.60.3.? $[(69, 515)]$
Next   displayed columns for results