Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
6050.a1 |
6050u1 |
6050.a |
6050u |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{2} \cdot 5^{3} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.108691077$ |
$1$ |
|
$10$ |
$2496$ |
$0.003308$ |
$3267/4$ |
$0.95621$ |
$2.59778$ |
$[1, -1, 0, 38, -104]$ |
\(y^2+xy=x^3-x^2+38x-104\) |
20.2.0.a.1 |
$[(14, 48)]$ |
6050.b1 |
6050t1 |
6050.b |
6050t |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{11} \cdot 5^{3} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$440$ |
$2$ |
$0$ |
$1.439042084$ |
$1$ |
|
$4$ |
$21120$ |
$1.119335$ |
$-2803221/22528$ |
$0.99503$ |
$4.22178$ |
$[1, -1, 0, -1777, -110819]$ |
\(y^2+xy=x^3-x^2-1777x-110819\) |
440.2.0.? |
$[(69, 268)]$ |
6050.c1 |
6050l1 |
6050.c |
6050l |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{13} \cdot 5^{10} \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$411840$ |
$2.780785$ |
$233551483825/8192$ |
$1.18287$ |
$7.05736$ |
$[1, 0, 1, -16412201, 25589509548]$ |
\(y^2+xy+y=x^3-16412201x+25589509548\) |
8.2.0.b.1 |
$[ ]$ |
6050.d1 |
6050c2 |
6050.d |
6050c |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 5^{12} \cdot 11^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.6.0.1 |
2B, 3Ns |
$660$ |
$144$ |
$5$ |
$1.600183226$ |
$1$ |
|
$6$ |
$34560$ |
$1.546280$ |
$4298149261979/1000000$ |
$1.00861$ |
$5.27567$ |
$[1, 0, 1, -93151, -10948302]$ |
\(y^2+xy+y=x^3-93151x-10948302\) |
2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.d.1, 20.6.0.e.1, $\ldots$ |
$[(-177, 44)]$ |
6050.d2 |
6050c1 |
6050.d |
6050c |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{12} \cdot 5^{9} \cdot 11^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.6.0.1 |
2B, 3Ns |
$660$ |
$144$ |
$5$ |
$3.200366453$ |
$1$ |
|
$5$ |
$17280$ |
$1.199707$ |
$-726572699/512000$ |
$1.05707$ |
$4.36971$ |
$[1, 0, 1, -5151, -212302]$ |
\(y^2+xy+y=x^3-5151x-212302\) |
2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.c.1, 20.6.0.e.1, $\ldots$ |
$[(151, 1492)]$ |
6050.e1 |
6050r2 |
6050.e |
6050r |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2 \cdot 5^{8} \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1.419392063$ |
$1$ |
|
$2$ |
$8640$ |
$0.891916$ |
$6352571665/2$ |
$0.96987$ |
$4.62153$ |
$[1, 0, 1, -13951, 633048]$ |
\(y^2+xy+y=x^3-13951x+633048\) |
3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 33.8.0-3.a.1.1, 264.16.0.? |
$[(68, -33)]$ |
6050.e2 |
6050r1 |
6050.e |
6050r |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{3} \cdot 5^{8} \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$0.473130687$ |
$1$ |
|
$4$ |
$2880$ |
$0.342610$ |
$18865/8$ |
$0.81990$ |
$3.15996$ |
$[1, 0, 1, -201, 548]$ |
\(y^2+xy+y=x^3-201x+548\) |
3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 33.8.0-3.a.1.2, 264.16.0.? |
$[(2, 11)]$ |
6050.f1 |
6050n3 |
6050.f |
6050n |
$3$ |
$25$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{25} \cdot 5^{3} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
25.60.0.1 |
5B.4.1 |
$2200$ |
$1200$ |
$37$ |
$4.332795033$ |
$1$ |
|
$2$ |
$144000$ |
$2.382076$ |
$-24680042791780949/369098752$ |
$1.03557$ |
$6.54131$ |
$[1, 1, 0, -3669690, -2707342700]$ |
\(y^2+xy=x^3+x^2-3669690x-2707342700\) |
5.12.0.a.1, 25.60.0.a.1, 40.24.0-5.a.1.8, 55.24.0-5.a.1.1, 200.120.0.?, $\ldots$ |
$[(2305, 31820)]$ |
6050.f2 |
6050n1 |
6050.f |
6050n |
$3$ |
$25$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{3} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
25.60.0.2 |
5B.4.2 |
$2200$ |
$1200$ |
$37$ |
$0.173311801$ |
$1$ |
|
$6$ |
$5760$ |
$0.772637$ |
$-19465109/22$ |
$1.06489$ |
$4.13442$ |
$[1, 1, 0, -3390, 74650]$ |
\(y^2+xy=x^3+x^2-3390x+74650\) |
5.12.0.a.2, 25.60.0.a.2, 40.24.0-5.a.2.8, 55.24.0-5.a.2.1, 200.120.0.?, $\ldots$ |
$[(-5, 305)]$ |
6050.f3 |
6050n2 |
6050.f |
6050n |
$3$ |
$25$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{5} \cdot 5^{3} \cdot 11^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.60.0.1 |
5Cs.4.1 |
$2200$ |
$1200$ |
$37$ |
$0.866559006$ |
$1$ |
|
$4$ |
$28800$ |
$1.577356$ |
$6761990971/5153632$ |
$1.05709$ |
$4.80606$ |
$[1, 1, 0, 23835, -787475]$ |
\(y^2+xy=x^3+x^2+23835x-787475\) |
5.60.0.a.1, 40.120.0-5.a.1.8, 55.120.0-5.a.1.1, 275.600.12.?, 440.240.5.?, $\ldots$ |
$[(1095, 36055)]$ |
6050.g1 |
6050f1 |
6050.g |
6050f |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{8} \cdot 5^{9} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$660$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$152064$ |
$2.462048$ |
$-1693700041/32000$ |
$0.97068$ |
$6.30674$ |
$[1, 1, 0, -1837750, -975203500]$ |
\(y^2+xy=x^3+x^2-1837750x-975203500\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 165.8.0.?, $\ldots$ |
$[ ]$ |
6050.g2 |
6050f2 |
6050.g |
6050f |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{24} \cdot 5^{7} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$660$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$456192$ |
$3.011353$ |
$106718863559/83886080$ |
$1.03425$ |
$6.77886$ |
$[1, 1, 0, 7312875, -4553097875]$ |
\(y^2+xy=x^3+x^2+7312875x-4553097875\) |
3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 132.8.0.?, 165.8.0.?, $\ldots$ |
$[ ]$ |
6050.h1 |
6050g4 |
6050.h |
6050g |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 5^{10} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$1320$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$40500$ |
$1.826874$ |
$-349938025/8$ |
$1.05078$ |
$5.75978$ |
$[1, 1, 0, -379700, 89899000]$ |
\(y^2+xy=x^3+x^2-379700x+89899000\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.1, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
6050.h2 |
6050g3 |
6050.h |
6050g |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{10} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$1320$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$13500$ |
$1.277567$ |
$-25/2$ |
$1.09044$ |
$4.43703$ |
$[1, 1, 0, -1575, 283375]$ |
\(y^2+xy=x^3+x^2-1575x+283375\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.2, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
6050.h3 |
6050g1 |
6050.h |
6050g |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{5} \cdot 5^{2} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$1320$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$2700$ |
$0.472848$ |
$-121945/32$ |
$0.94334$ |
$3.40976$ |
$[1, 1, 0, -365, -3395]$ |
\(y^2+xy=x^3+x^2-365x-3395\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.4, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
6050.h4 |
6050g2 |
6050.h |
6050g |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{15} \cdot 5^{2} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$1320$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$8100$ |
$1.022154$ |
$46969655/32768$ |
$1.06296$ |
$4.05053$ |
$[1, 1, 0, 2660, 25040]$ |
\(y^2+xy=x^3+x^2+2660x+25040\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.3, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
6050.i1 |
6050h1 |
6050.i |
6050h |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{7} \cdot 5^{7} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$80640$ |
$1.956476$ |
$-76711450249/851840$ |
$0.93960$ |
$5.64164$ |
$[1, 1, 0, -267775, -53954875]$ |
\(y^2+xy=x^3+x^2-267775x-53954875\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 165.8.0.?, 440.2.0.?, 1320.16.0.? |
$[ ]$ |
6050.i2 |
6050h2 |
6050.i |
6050h |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{21} \cdot 5^{9} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$2.505783$ |
$2882081488391/2883584000$ |
$0.98944$ |
$6.05589$ |
$[1, 1, 0, 896850, -278727500]$ |
\(y^2+xy=x^3+x^2+896850x-278727500\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 165.8.0.?, 440.2.0.?, 1320.16.0.? |
$[ ]$ |
6050.j1 |
6050a1 |
6050.j |
6050a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{5} \cdot 5^{2} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$440$ |
$60$ |
$3$ |
$0.524356124$ |
$1$ |
|
$4$ |
$720$ |
$-0.153678$ |
$-16875/32$ |
$1.36072$ |
$2.48046$ |
$[1, -1, 0, -17, 61]$ |
\(y^2+xy=x^3-x^2-17x+61\) |
5.15.0.a.1, 40.30.1.a.1, 55.30.0.b.1, 88.2.0.?, 440.60.3.? |
$[(3, 4)]$ |
6050.k1 |
6050m1 |
6050.k |
6050m |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{5} \cdot 5^{8} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$440$ |
$60$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$39600$ |
$1.849989$ |
$-16875/32$ |
$1.36072$ |
$5.24165$ |
$[1, -1, 0, -51992, -9423584]$ |
\(y^2+xy=x^3-x^2-51992x-9423584\) |
5.15.0.a.1, 40.30.1.a.1, 55.30.0.b.1, 88.2.0.?, 440.60.3.? |
$[ ]$ |
6050.l1 |
6050e1 |
6050.l |
6050e |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{4} \cdot 5^{7} \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25344$ |
$1.452547$ |
$-14641/80$ |
$1.01441$ |
$4.68283$ |
$[1, 0, 1, -7626, -828852]$ |
\(y^2+xy+y=x^3-7626x-828852\) |
20.2.0.a.1 |
$[ ]$ |
6050.m1 |
6050b1 |
6050.m |
6050b |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{9} \cdot 5^{9} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$1320$ |
$24$ |
$1$ |
$1.116387049$ |
$1$ |
|
$4$ |
$10368$ |
$1.065662$ |
$-616295051/64000$ |
$1.06545$ |
$4.27829$ |
$[1, 0, 1, -4876, 141898]$ |
\(y^2+xy+y=x^3-4876x+141898\) |
3.6.0.b.1, 33.12.0.a.1, 120.12.0.?, 440.2.0.?, 1320.24.1.? |
$[(32, 121)]$ |
6050.n1 |
6050k2 |
6050.n |
6050k |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12960$ |
$0.963024$ |
$-53969305/10648$ |
$0.89387$ |
$4.10017$ |
$[1, 1, 0, -2785, 64365]$ |
\(y^2+xy=x^3+x^2-2785x+64365\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 165.8.0.?, 264.8.0.?, $\ldots$ |
$[ ]$ |
6050.n2 |
6050k1 |
6050.n |
6050k |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{2} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4320$ |
$0.413718$ |
$34295/22$ |
$0.82040$ |
$3.22113$ |
$[1, 1, 0, 240, -370]$ |
\(y^2+xy=x^3+x^2+240x-370\) |
3.4.0.a.1, 88.2.0.?, 120.8.0.?, 165.8.0.?, 264.8.0.?, $\ldots$ |
$[ ]$ |
6050.o1 |
6050q1 |
6050.o |
6050q |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{13} \cdot 5^{4} \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$6.739483110$ |
$1$ |
|
$0$ |
$7488$ |
$0.777120$ |
$233551483825/8192$ |
$1.18287$ |
$4.29617$ |
$[1, 1, 0, -5425, -156075]$ |
\(y^2+xy=x^3+x^2-5425x-156075\) |
8.2.0.b.1 |
$[(-5199/11, 31446/11)]$ |
6050.p1 |
6050p1 |
6050.p |
6050p |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{11} \cdot 5^{8} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$2.639749361$ |
$1$ |
|
$2$ |
$79200$ |
$2.052101$ |
$-38401771585/22528$ |
$0.95307$ |
$5.92976$ |
$[1, 1, 0, -621700, 188514000]$ |
\(y^2+xy=x^3+x^2-621700x+188514000\) |
88.2.0.? |
$[(369, 2901)]$ |
6050.q1 |
6050o2 |
6050.q |
6050o |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{2} \cdot 5^{9} \cdot 11^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$5.077842472$ |
$1$ |
|
$2$ |
$57600$ |
$1.877417$ |
$1039509197/484$ |
$0.93121$ |
$5.69998$ |
$[1, 1, 0, -319200, -69518500]$ |
\(y^2+xy=x^3+x^2-319200x-69518500\) |
2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? |
$[(2210, 99020)]$ |
6050.q2 |
6050o1 |
6050.q |
6050o |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{4} \cdot 5^{9} \cdot 11^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$10.15568494$ |
$1$ |
|
$1$ |
$28800$ |
$1.530844$ |
$-148877/176$ |
$0.84151$ |
$4.81131$ |
$[1, 1, 0, -16700, -1456000]$ |
\(y^2+xy=x^3+x^2-16700x-1456000\) |
2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? |
$[(44644/9, 8937800/9)]$ |
6050.r1 |
6050i2 |
6050.r |
6050i |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2 \cdot 5^{2} \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$19008$ |
$1.286146$ |
$6352571665/2$ |
$0.96987$ |
$5.16481$ |
$[1, 1, 0, -67520, -6781210]$ |
\(y^2+xy=x^3+x^2-67520x-6781210\) |
3.4.0.a.1, 8.2.0.b.1, 15.8.0-3.a.1.1, 24.8.0.b.1, 120.16.0.? |
$[ ]$ |
6050.r2 |
6050i1 |
6050.r |
6050i |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{3} \cdot 5^{2} \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6336$ |
$0.736839$ |
$18865/8$ |
$0.81990$ |
$3.70324$ |
$[1, 1, 0, -970, -6420]$ |
\(y^2+xy=x^3+x^2-970x-6420\) |
3.4.0.a.1, 8.2.0.b.1, 15.8.0-3.a.1.2, 24.8.0.b.1, 120.16.0.? |
$[ ]$ |
6050.s1 |
6050j2 |
6050.s |
6050j |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{12} \cdot 5^{6} \cdot 11^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$1320$ |
$32$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.673511$ |
$-128667913/4096$ |
$0.98675$ |
$3.81022$ |
$[1, 1, 0, -1300, 18000]$ |
\(y^2+xy=x^3+x^2-1300x+18000\) |
3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 24.16.0.b.2, 165.8.0.?, $\ldots$ |
$[ ]$ |
6050.s2 |
6050j1 |
6050.s |
6050j |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{4} \cdot 5^{6} \cdot 11^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$1320$ |
$32$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.124205$ |
$24167/16$ |
$0.94416$ |
$2.81875$ |
$[1, 1, 0, 75, 125]$ |
\(y^2+xy=x^3+x^2+75x+125\) |
3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 24.16.0.b.1, 165.8.0.?, $\ldots$ |
$[ ]$ |
6050.t1 |
6050d1 |
6050.t |
6050d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{7} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$440$ |
$2$ |
$0$ |
$1.553290452$ |
$1$ |
|
$0$ |
$63360$ |
$1.481636$ |
$9261/10$ |
$0.83428$ |
$4.63621$ |
$[1, -1, 0, 14558, 625466]$ |
\(y^2+xy=x^3-x^2+14558x+625466\) |
440.2.0.? |
$[(-149/3, 16861/3)]$ |
6050.u1 |
6050s1 |
6050.u |
6050s |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{2} \cdot 5^{9} \cdot 11^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$5.763503999$ |
$1$ |
|
$0$ |
$137280$ |
$2.006973$ |
$3267/4$ |
$0.95621$ |
$5.35898$ |
$[1, -1, 0, 114383, 15699041]$ |
\(y^2+xy=x^3-x^2+114383x+15699041\) |
20.2.0.a.1 |
$[(2296/3, 208181/3)]$ |
6050.v1 |
6050bq1 |
6050.v |
6050bq |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{2} \cdot 5^{3} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27456$ |
$1.202255$ |
$3267/4$ |
$0.95621$ |
$4.25002$ |
$[1, -1, 1, 4575, 124677]$ |
\(y^2+xy+y=x^3-x^2+4575x+124677\) |
20.2.0.a.1 |
$[ ]$ |
6050.w1 |
6050bm2 |
6050.w |
6050bm |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2 \cdot 5^{8} \cdot 11^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.8.0.2 |
3B.1.2 |
$24$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$95040$ |
$2.090866$ |
$6352571665/2$ |
$0.96987$ |
$6.27377$ |
$[1, 0, 0, -1688013, -844275233]$ |
\(y^2+xy=x^3-1688013x-844275233\) |
3.8.0-3.a.1.1, 8.2.0.b.1, 24.16.0-24.b.1.4 |
$[ ]$ |
6050.w2 |
6050bm1 |
6050.w |
6050bm |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{3} \cdot 5^{8} \cdot 11^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.8.0.1 |
3B.1.1 |
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$31680$ |
$1.541557$ |
$18865/8$ |
$0.81990$ |
$4.81220$ |
$[1, 0, 0, -24263, -753983]$ |
\(y^2+xy=x^3-24263x-753983\) |
3.8.0-3.a.1.2, 8.2.0.b.1, 24.16.0-24.b.1.8 |
$[ ]$ |
6050.x1 |
6050bl2 |
6050.x |
6050bl |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{2} \cdot 5^{3} \cdot 11^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$1.072697$ |
$1039509197/484$ |
$0.93121$ |
$4.59101$ |
$[1, 0, 0, -12768, -556148]$ |
\(y^2+xy=x^3-12768x-556148\) |
2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? |
$[ ]$ |
6050.x2 |
6050bl1 |
6050.x |
6050bl |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{4} \cdot 5^{3} \cdot 11^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$5760$ |
$0.726124$ |
$-148877/176$ |
$0.84151$ |
$3.70235$ |
$[1, 0, 0, -668, -11648]$ |
\(y^2+xy=x^3-668x-11648\) |
2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? |
$[ ]$ |
6050.y1 |
6050bf1 |
6050.y |
6050bf |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{11} \cdot 5^{2} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$0.110313389$ |
$1$ |
|
$8$ |
$15840$ |
$1.247381$ |
$-38401771585/22528$ |
$0.95307$ |
$4.82080$ |
$[1, 0, 0, -24868, 1508112]$ |
\(y^2+xy=x^3-24868x+1508112\) |
88.2.0.? |
$[(98, 72)]$ |
6050.z1 |
6050x2 |
6050.z |
6050x |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{6} \cdot 5^{12} \cdot 11^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.6.0.1 |
2B, 3Ns |
$660$ |
$144$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$380160$ |
$2.745228$ |
$4298149261979/1000000$ |
$1.00861$ |
$6.92790$ |
$[1, 0, 0, -11271213, 14560918417]$ |
\(y^2+xy=x^3-11271213x+14560918417\) |
2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.d.1, 20.6.0.e.1, $\ldots$ |
$[ ]$ |
6050.z2 |
6050x1 |
6050.z |
6050x |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{12} \cdot 5^{9} \cdot 11^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.6.0.1 |
2B, 3Ns |
$660$ |
$144$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$190080$ |
$2.398655$ |
$-726572699/512000$ |
$1.05707$ |
$6.02195$ |
$[1, 0, 0, -623213, 281950417]$ |
\(y^2+xy=x^3-623213x+281950417\) |
2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.c.1, 20.6.0.e.1, $\ldots$ |
$[ ]$ |
6050.ba1 |
6050bg1 |
6050.ba |
6050bg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( 2^{13} \cdot 5^{10} \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1.419715423$ |
$1$ |
|
$4$ |
$37440$ |
$1.581839$ |
$233551483825/8192$ |
$1.18287$ |
$5.40513$ |
$[1, 0, 0, -135638, -19238108]$ |
\(y^2+xy=x^3-135638x-19238108\) |
8.2.0.b.1 |
$[(-212, 90)]$ |
6050.bb1 |
6050bn2 |
6050.bb |
6050bn |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$64800$ |
$1.767742$ |
$-53969305/10648$ |
$0.89387$ |
$5.20913$ |
$[1, 0, 0, -69638, 8184892]$ |
\(y^2+xy=x^3-69638x+8184892\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 33.8.0-3.a.1.1, 88.2.0.?, 264.16.0.? |
$[ ]$ |
6050.bb2 |
6050bn1 |
6050.bb |
6050bn |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{8} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$264$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$21600$ |
$1.218437$ |
$34295/22$ |
$0.82040$ |
$4.33009$ |
$[1, 0, 0, 5987, -58233]$ |
\(y^2+xy=x^3+5987x-58233\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 33.8.0-3.a.1.2, 88.2.0.?, 264.16.0.? |
$[ ]$ |
6050.bc1 |
6050bc1 |
6050.bc |
6050bc |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{3} \cdot 5^{7} \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$0.672977302$ |
$1$ |
|
$4$ |
$11520$ |
$1.196562$ |
$-117649/440$ |
$0.93815$ |
$4.33282$ |
$[1, 1, 1, -3088, -181719]$ |
\(y^2+xy+y=x^3+x^2-3088x-181719\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 165.8.0.?, 440.2.0.?, 1320.16.0.? |
$[(215, 2917)]$ |
6050.bc2 |
6050bc2 |
6050.bc |
6050bc |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2 \cdot 5^{9} \cdot 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1320$ |
$16$ |
$0$ |
$2.018931907$ |
$1$ |
|
$0$ |
$34560$ |
$1.745867$ |
$80062991/332750$ |
$0.92204$ |
$5.06027$ |
$[1, 1, 1, 27162, 4295281]$ |
\(y^2+xy+y=x^3+x^2+27162x+4295281\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 165.8.0.?, 440.2.0.?, 1320.16.0.? |
$[(695/2, 29551/2)]$ |
6050.bd1 |
6050bb1 |
6050.bd |
6050bb |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{8} \cdot 5^{9} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$0.071114547$ |
$1$ |
|
$10$ |
$13824$ |
$1.263098$ |
$-1693700041/32000$ |
$0.97068$ |
$4.65450$ |
$[1, 1, 1, -15188, 725781]$ |
\(y^2+xy+y=x^3+x^2-15188x+725781\) |
3.4.0.a.1, 12.8.0-3.a.1.3, 15.8.0-3.a.1.2, 20.2.0.a.1, 60.16.0-60.a.1.7 |
$[(325, 5337)]$ |
6050.bd2 |
6050bb2 |
6050.bd |
6050bb |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{24} \cdot 5^{7} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$0.213343642$ |
$1$ |
|
$8$ |
$41472$ |
$1.812405$ |
$106718863559/83886080$ |
$1.03425$ |
$5.12662$ |
$[1, 1, 1, 60437, 3448281]$ |
\(y^2+xy+y=x^3+x^2+60437x+3448281\) |
3.4.0.a.1, 12.8.0-3.a.1.4, 15.8.0-3.a.1.1, 20.2.0.a.1, 60.16.0-60.a.1.6 |
$[(275, 6262)]$ |
6050.be1 |
6050bh1 |
6050.be |
6050bh |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{5} \cdot 5^{8} \cdot 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$440$ |
$60$ |
$3$ |
$0.178812584$ |
$1$ |
|
$6$ |
$3600$ |
$0.651040$ |
$-16875/32$ |
$1.36072$ |
$3.58942$ |
$[1, -1, 1, -430, 7197]$ |
\(y^2+xy+y=x^3-x^2-430x+7197\) |
5.15.0.a.1, 40.30.1.a.1, 55.30.0.b.1, 88.2.0.?, 440.60.3.? |
$[(69, 515)]$ |